Experiment and Numerical Simulation on Grouting Reinforcement Parameters of Ultra-Shallow Buried Double-Arch Tunnel
Abstract
:1. Introduction
2. Overview of the Engineering
3. Laboratory Experiment
3.1. Grouting Ratio Experiment
3.2. Grouted Surrounding Rock Strength
4. Numerical Model
4.1. Finite Difference Model
4.2. Simulation Conditions
4.3. Verification of Numerical Model
4.4. Influence of Grouting Reinforcement Layer Thickness
4.4.1. Ground Settlement Analysis
4.4.2. Vault Displacement Analysis
4.4.3. Surrounding Rock Plastic Zone
4.4.4. Pipeline Deformation
4.5. Influence of Water–Cement Ratio
4.5.1. Ground Settlement Analysis
4.5.2. Vault Displacement Analysis
4.5.3. Analysis of Surrounding Rock Plastic Zone
4.5.4. Pipeline Deformation Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
h | Grouting reinforcement layer thickness |
η | Water–cement ratio |
fc | Strength of cement sample |
φ | Friction angle |
c | Cohesive force |
UCS | Unconfined compressive strength |
Increase rate of cohesive force | |
Increase rate of friction angle | |
Increase rate of unconfined compressive strength | |
ω1 | Ratio of the shear plastic area of grouted surrounding rock to the shear plastic area of surrounding rock without grouting |
ω2 | Ratio of the area of grouted surrounding rock tensile plastic zone to the area of surrounding rock tensile plastic zone without grouting |
Shear strength |
References
- Xu, Z.; Wang, B.; Kong, J.; Chen, T.; Liang, Y. Study on the influence of ceiling tunnel angle on the gas shunting efficiency of urban highway tunnel. Case Stud. Therm. Eng. 2021, 25, 100888. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Li, Y.Y.; Ge, X.Y.; Wang, S.H. Risk evaluating of chongqing yangtze river highway tunnel environment. IOP Conf. Ser. Earth Environ. Sci. 2020, 526, 012021. [Google Scholar] [CrossRef]
- Yang, H.; Liu, C.; Jiang, X.; Shi, H.; Sun, G. Shaking table test and numerical simulation for dynamic response of shallow-buried bias double-arch tunnel. Geotech. Geol. Eng. 2020, 38, 3915–3929. [Google Scholar] [CrossRef]
- Vosoughifar, H.; Madadi, F.; Rabiefar, A. Modified dynamic stress concentration factor for twin tunnels using a novel approach of FEM-scattering. Tunn. Undergr. Space Technol. 2017, 70, 30–41. [Google Scholar] [CrossRef]
- Wang, S.R.; Wang, Y.G.; Li, C.L.; Zou, Z.S.; Cui, F. Evolution characteristics analysis of pressure—Arch of a highway tunnel under different stress conditions. J. Eng. Sci. Technol. Rev. 2016, 9, 99–105. [Google Scholar] [CrossRef]
- Wang, H.N.; Zeng, G.S.; Sutilt, S.; Jiang, M.G.; Wu, L. Analytical solutions of stresses and displacements for deeply buried twin tunnels in viscoelastic rock. Int. J. Rock Meck. Min. 2017, 93, 13–29. [Google Scholar] [CrossRef]
- Li, C.; Wang, S.; Wang, Y. Skewed pressure characteristics of equivalent load in double-arch tunnel. J. Geophys. Eng. 2016, 48, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.T.; Zhang, H.; Zhang, Z.X.; Liu, K. Physical model test study of influence of advance of shield tunnel on adjacent underground pipelines. Rock Soil Mech. 2016, 37, 151–160. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Hui, J.; Jia, J.Q.; Wang, K. Field measurement and numerical simulation of the influence of blasting excavation on adjacent buried pipelines. Int. J. Crit. Infrastruct. 2019, 15, 70–89. [Google Scholar] [CrossRef]
- Zang, C.; Chen, M.; Zhang, G.; Wang, K.; Gu, D. Research on the failure process and stability control technology in a deep roadway: Numerical simulation and field test. Energy Sci. Eng. 2020, 8, 2297–2310. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Zhang, M.; Wang, F.; Ling, T.; Yang, X. The failure mechanism of surrounding rock around an existing shield tunnel induced by an adjacent excavation. Comput. Geotech. 2020, 117, 103236. [Google Scholar] [CrossRef]
- Shin, J.H.; Choi, Y.K.; Kwon, O.Y.; Lee, S.D. Model testing for pipe-reinforced tunnel heading in a granular soil. Tunn. Undergr. Space Technol. 2008, 23, 241–250. [Google Scholar] [CrossRef]
- Sun, L.; Jiang, Z.; Liu, B. Numerical simulation and analysis of advance pre-support for underground cross-street tunnel. IOP Conf. Ser. Earth Environ. Sci. 2019, 267, 042007. [Google Scholar] [CrossRef] [Green Version]
- Niu, J.; Li, Z.; Gu, W.H.; Chen, K. Experimental study of split grouting reinforcement mechanism in filling medium and effect evaluation. Sensors 2020, 20, 3088. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, Q.; Li, S.C.; Liu, R.; Zhang, L. Numerical simulation and experimental study on soil split grouting reinforcement mechanism. J. Cent. South Univ. 2018, 49, 1213–1220. [Google Scholar]
- Lan, X.; Zhang, X.; Li, X.; Zhang, J.; Zhou, Z. Experimental study on grouting reinforcement mechanism of heterogeneous fractured rock and soil mass. Geotech. Geol. Eng. 2020, 38, 4949–4967. [Google Scholar] [CrossRef]
- Jin, P. Bridge and tunnel engineering construction strengthening technology of grouting method in application. In Proceedings of the International Conference on Electronic, Shenyang, China, 1–3 April 2016. [Google Scholar]
- Wu, K.; Ma, M.Y. Evaluation of the grouting effect of the change of grout hole spacing in splitting grouting for dams. App. Mech. Mater. 2012, 151, 295–299. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Q.; Liu, R.; Li, S.; Zhang, L.; Liu, Y.; Gui, D. Grouting reinforcement mechanism and experimental study of cement quick-setting slurry infiltration. IOP Conf. 2017, 81, 012025. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Zou, C.; Meng, Z.H. The influence of different grouting methods on the surface environment of short clear distance tunnel. IOP Conf. Ser. Earth Environ. Sci. 2020, 510, 052063. [Google Scholar] [CrossRef]
- Yi, W.; Wang, Y.H.; Zhou, R. Application of grouting technology. Adv. Mater. Res. 2011, 163–167, 471–474. [Google Scholar] [CrossRef]
- Zong, Y.J.; Han, L.J.; Han, G.L. Study on shear properties of rock structural plane by grouting reinforcement. Adv. Mater. Res. 2011, 250–253, 1520–1526. [Google Scholar] [CrossRef]
- Heo, H.S.; Lee, B.J. Study on durability of grouting materials for reinforcement in a double-deck tunnel. Int. J. Eng. Technol. 2018, 10, 294–299. [Google Scholar] [CrossRef] [Green Version]
- Evdokimov, P.D.; Adamovich, A.N.; Fradkin, L.P.; Denisov, V.N. Shear strengths of fissures in ledge rock before and after grouting. Hydrotech. Constr. 1970, 4, 229–233. [Google Scholar] [CrossRef]
- Moosavi, M.; Bawden, W.F. Shear strength of portland cement grout. Cem. Concr. Compos. 2003, 25, 729–735. [Google Scholar] [CrossRef]
- Cheng, H.; Peng, S.L.; Rong, C.X.; Sun, Z.H. Numerical simulation and engineering application of grouting reinforcement for surrounding rocks of chamber in deep of 1000 m by L-shaped boreholes. Yantu Lixue Rock Soil Mech. 2018, 39, 274–284. [Google Scholar] [CrossRef]
- Lu, Y.F.; Yu, Y.Y.; Chen, Z.M. Study on grouting reinforcement of surrounding rock of tunnel under railway station. In Proceedings of the 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Phuket, Thailand, 28–29 February 2020. [Google Scholar]
- Yang, L.; Lin, R.F.; Li, Z.F.; Li, S.C.; Zhang, Q.S.; Liu, R.T.; Zhang, X.; Wang, K.; Chen, H. Influence of grout viscosity on the grouting reinforcement effect of completely weathered granite. China J. Highw. Transp. 2018, 31, 246–254. [Google Scholar]
- Liu, B.; Sang, H.; Wang, Z. Experimental study on the mechanical properties of rock fracture after grouting reinforcement. Energies 2020, 13, 4814. [Google Scholar] [CrossRef]
- Ma, S.J.; Ma, D.P. Grouting material for broken surrounding rock and its mechanical properties of grouting reinforcement. Geotech. Geol. Eng. 2021, 39, 3785–3793. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, L.; Chu, Y.T.; Zhang, Q.S. Research on influence of water-cement ratio on reinforcement effect for permeation grouting in sand layer. Adv. Mater. Sci. Eng. 2020, 2020 (Suppl. 1), 5329627. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Long, L.I.; Wang, C. Experimental study on failure of cracked rock-like material after grouting reinforcement. J. Cent. South Univ. 2018, 49, 957–963. [Google Scholar] [CrossRef]
- National Standards of the People’s Republic of China. Standard for Test Methods of Concrete Physical and Mechanical Properties (GB/T50081-2019); China Architecture and Architecture Press: Beijing, China, 2019. [Google Scholar]
- Zhan, X.D. Experimental research of grouting reinforcement mechanism for broken rock soil mass as heterogeneous medium. Munic. Eng. Technol. 2019, 2, 113–116. [Google Scholar]
- Zong, Y.J.; Han, L.J.; Han, G.L. Mechanical characteristics of confined grouting reinforcement for cracked rock mass. J. Min. Saf. Eng. 2013, 4, 483–488. [Google Scholar]
- Wang, H.P.; Gao, Y.F.; Li, S.C. Uniaxial experiment study on mechanical properties of reinforced broken rocks pre-and-post grouting. Chin. J. Undergr. Space Eng. 2007, 3, 27–31. [Google Scholar]
- Zhou, W.Y.; Yang, R.Q.; Yan, G.R. Study on the efficacy of grouting reinforcement of slightly weathered rock masses at the ertan arch dam abutments. Chin. J. Rock Mech. Eng. 1993, 12, 138–150. [Google Scholar]
- Liu, C.W.; Lu, S.L. Reinforcement effect of cement grouting on engineering rock mass. J. China Univ. Min. Technol. 2000, 29, 454–458. [Google Scholar]
- Yang, M.J.; Zhang, N. Study on the intrinsic model of broken rockmass after grouting reinforcement. Met. Mine 1998, 5, 11–14. [Google Scholar]
- Niu, X.L.; Fu, Z.L. Test of grouting reinforcement of deep roadway and control of its stability. Met. Mine 2007, 37, 18–21. [Google Scholar]
- Xu, H.F.; Geng, H.S.; Li, C.F.; Chen, W.; Wang, C. Estimating strength of grouting reinforced bodies in broken rock mass. Chin. J. Geotech. Eng. 2013, 11, 2018–2022. [Google Scholar]
Data Sources | Lithology | η | the UCS of Sample before Grouting (MPa) | the UCS of Sample after Grouting (MPa) | |||
---|---|---|---|---|---|---|---|
Experimental Research of Grouting Reinforcement Mechanism for Broken Rock Soil Mass as Heterogeneous Medium [34] | Undisturbed soil and fault gouge | 1.000 | 0.037 | 0.350 | 845.9 | 42.297 | 803.649 |
Undisturbed soil and fault gouge | 1.000 | 0.084 | 0.398 | 373.8 | 18.690 | 355.119 | |
Undisturbed soil and fault gouge | 1.000 | 0.157 | 0.420 | 167.5 | 8.376 | 159.140 | |
Mechanical characteristics of confined grouting reinforcement for cracked rock mass [35] | Limestone | 0.750 | 7.176 | 12.140 | 69.2 | 3.459 | 65.716 |
Limestone | 0.750 | 7.422 | 13.397 | 80.5 | 4.025 | 76.479 | |
Limestone | 0.750 | 8.214 | 15.360 | 87.0 | 4.350 | 82.648 | |
Limestone | 0.750 | 7.547 | 16.225 | 115.0 | 5.749 | 109.237 | |
Sandstone | 0.750 | 3.890 | 6.805 | 74.9 | 3.747 | 71.189 | |
Sandstone | 0.750 | 4.560 | 8.101 | 77.7 | 3.883 | 73.771 | |
Sandstone | 0.750 | 4.790 | 9.512 | 98.6 | 4.929 | 93.651 | |
Sandstone | 0.750 | 5.270 | 10.043 | 90.6 | 4.528 | 86.041 | |
Uniaxial Experiment Study on Mechanical Properties of Reinforced Broken Rocks Pre-and-post Grouting [36] | Red sandstone | 1.000 | 3.540 | 4.280 | 20.9 | 1.045 | 19.859 |
Study on the efficacy of grouting reinforcement of slightly weathered rock masses at the Ertan Arch Dam abutments [37] | Weakly weathered syenite | 1.000 | 6.430 | 7.770 | 20.8 | 1.042 | 19.798 |
Weakly weathered syenite | 1.000 | 28.800 | 32.000 | 11.1 | 0.556 | 10.556 | |
Reinforcement effect of cement grouting on engineering rock mass [38] | Sandstone | 1.000 | 0.710 | 2.310 | 225.4 | 11.268 | 214.085 |
Mudstone | 1.000 | 0.600 | 1.210 | 101.7 | 5.083 | 96.583 | |
Sandstone | 1.000 | 0.350 | 1.350 | 285.7 | 14.286 | 271.429 | |
Sandstone | 1.000 | 2.510 | 4.680 | 86.5 | 4.323 | 82.131 | |
Study on the intrinsic model of broken rockmass after grouting reinforcement [39] | Mudstone | 1.000 | 10.000 | 21.300 | 113.0 | 5.650 | 107.350 |
Mudstone | 1.000 | 14.700 | 22.500 | 53.1 | 2.653 | 50.408 | |
Test of grouting reinforcement of deep roadway and control of its stability [40] | Sandstone | 1.000 | 34.300 | 55.300 | 61.2 | 3.061 | 58.163 |
Malmstone | 1.000 | 0.100 | 1.220 | 1120.0 | 56.000 | 1064.000 | |
Estimating strength of grouting reinforced bodies in broken rock mass [41] | Sandstone | 1.000 | 34.300 | 55.300 | 61.2 | 3.061 | 58.163 |
Malmstone | 1.000 | 0.100 | 1.220 | 1120.0 | 56.000 | 1064.000 |
Water–Cement Ratio | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 | 1.00 |
---|---|---|---|---|---|---|
φ (°) | 26.3 | 25.5 | 24.8 | 24.0 | 23.3 | 22.5 |
c (MPa) | 0.42 | 0.38 | 0.33 | 0.29 | 0.24 | 0.20 |
Material | Density (kg/m3) | Elastic Modulus (MPa) | Poisson’s Ratio | Frictional Angle (°) | Cohesive Force (kPa) | Coefficient of Permeability (10−6 m·s) | Thickness (m) |
---|---|---|---|---|---|---|---|
Miscellaneous fill | 1900 | 10.76 | 0.32 | 19.4 | 26.8 | 52.52 | 4 |
Completely weathered granite | 1950 | 13.00 | 0.35 | 20.0 | 108.0 | 63.00 | 22 |
Fragmentary strongly weathered granite | 2300 | 10.72 | 0.3 | 30.5 | 56.5 | 82.00 | 24 |
Pipeline | 1400 | 2000 | 0.34 | — | — | — | 0.01 |
The heading tunnel lining | 2500 | 10,500.00 | 0.25 | — | — | — | 0.3 |
Inverted arch initial support | 2600 | 34,000.00 | 0.15 | — | — | — | 0.3 |
Middle partition wall and side wall | 2500 | 30,000.00 | 0.20 | — | — | — | — |
Initial support of the first layer of arch | 2600 | 34,000.00 | 0.15 | — | — | — | 0.3 |
Initial support of the second layer of arch | 2550 | 32,000.00 | 0.15 | — | — | — | 0.22 |
Grouting Reinforcement Layer Thickness | h = 0 | h = 0.5 m | h = 1.0 m | h = 1.5 m | h = 2.0 m | h = 2.5 m |
---|---|---|---|---|---|---|
Shear plastic zone area (m2) | 384.78 | 354.35 | 182.15 | 126.17 | 137.64 | 142.73 |
ω1 | 1 | 0.92 | 0.47 | 0.33 | 0.36 | 0.37 |
Tensile plastic zone area (m2) | 286.16 | 252.30 | 61.73 | 22.41 | 24.37 | 17.98 |
ω2 | 1 | 0.88 | 0.22 | 0.08 | 0.09 | 0.06 |
Grouting Reinforcement Layer Thickness | η = 0.75 | η = 0.80 | η = 0.85 | η = 0.90 | η = 0.95 | η = 1.00 |
---|---|---|---|---|---|---|
Shear plastic zone area (m2) | 126.17 | 142.21 | 245.67 | 332.10 | 338.17 | 360.69 |
ω1 | 0.33 | 0.37 | 0.64 | 0.86 | 0.88 | 0.94 |
Tensile plastic zone area (m2) | 22.41 | 44.02 | 113.13 | 188.00 | 277.55 | 248.25 |
ω2 | 0.08 | 0.15 | 0.40 | 0.66 | 0.97 | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Cao, A.; Wu, Z.; Wang, H.; Liu, X.; Li, H.; Sun, Y. Experiment and Numerical Simulation on Grouting Reinforcement Parameters of Ultra-Shallow Buried Double-Arch Tunnel. Appl. Sci. 2021, 11, 10491. https://doi.org/10.3390/app112110491
Wang J, Cao A, Wu Z, Wang H, Liu X, Li H, Sun Y. Experiment and Numerical Simulation on Grouting Reinforcement Parameters of Ultra-Shallow Buried Double-Arch Tunnel. Applied Sciences. 2021; 11(21):10491. https://doi.org/10.3390/app112110491
Chicago/Turabian StyleWang, Jianxiu, Ansheng Cao, Zhao Wu, Huanran Wang, Xiaotian Liu, Huboqiang Li, and Yuanwei Sun. 2021. "Experiment and Numerical Simulation on Grouting Reinforcement Parameters of Ultra-Shallow Buried Double-Arch Tunnel" Applied Sciences 11, no. 21: 10491. https://doi.org/10.3390/app112110491
APA StyleWang, J., Cao, A., Wu, Z., Wang, H., Liu, X., Li, H., & Sun, Y. (2021). Experiment and Numerical Simulation on Grouting Reinforcement Parameters of Ultra-Shallow Buried Double-Arch Tunnel. Applied Sciences, 11(21), 10491. https://doi.org/10.3390/app112110491