A Dual-Band Dual-Polarized Antenna with Improved Isolation Characteristics for Polarimetric SAR Applications
Abstract
:1. Introduction
2. Antenna Design and Performance
2.1. Single Ka-Band Patch Antenna Design and Performance
2.2. 2 × 2 Ka-Band Patch Antenna Array Design and Performance
2.3. Single P-Band Dipole Antenna Design and Performance
2.4. Dual-Polarization P-Band Dipole Antenna Design and Performance
2.5. Dual-Polarization P-Band Tx/Rx Dipole Antenna Design and Performance
2.6. Fractal Absorber Design and Performance
2.7. Proposed Antenna Design and Performance
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A Tutorial on Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yamaguchi, Y.; Lee, J.-S.; Touzi, R.; Boerner, W.-M. Applications of Polarimetric SAR. J. Sens. 2015, 2015, 316391. [Google Scholar] [CrossRef]
- Earthdata. Available online: https://earthdata.nasa.gov/learn/backgrounders/what-is-sar (accessed on 9 September 2021).
- Ouchi, K. Recent Trend and Advance of Synthetic Aperture Radar with Selected Topics. Remote Sens. 2013, 5, 716–807. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.-G.; Tan, P.-K.; Chio, T.-H. Wideband, low profile P- and Ku-band shared aperture antenna with high isolation and low cross-polarisation. IET Microw. Antennas Propag. 2013, 7, 223–229. [Google Scholar] [CrossRef]
- Kong, L.; Xu, X. A Compact Dual-Band Dual-Polarized Microstrip Antenna Array for MIMO-SAR Applications. IEEE Trans. Antennas Propag. 2018, 66, 2374–2381. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory Analysis and Design, 3rd ed.; John Wiley & Sons Inc.: New York, NY, USA, 2005; pp. 813–815. [Google Scholar]
- Sulyman, A.I.; Nassar, A.T.; Samimi, M.K.; MacCartney, G.R., Jr.; Rappaport, T.S.; Alsanie, A. Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Commun. Mag. 2014, 52, 78–86. [Google Scholar] [CrossRef]
- Southwest Microwave. Available online: https://mpd.southwestmicrowave.com/product/1092-03a-6-end-launch-2-92mm-k-40-ghz-jack-female-standard-block/ (accessed on 9 September 2021).
- Lee, J.-I.; Yeo, J.; Han, D.-H. Design of planar dipole pair antenna for indoor digital TV reception. J. Korea Inst. Inf. Commun. Eng. 2014, 18, 2600–2606. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-I.; Yeo, J.; Park, J.-T. Compact half bow-tie-type quasi-Yagi antenna for terrestrial DTV reception. J. Korea Acad. Ind. Coop. Soc. 2013, 14, 1908–1914. [Google Scholar] [CrossRef] [Green Version]
- Dileep, A.; Abhilash, P.V.; Joy, V.; Singh, H.; Nair, R.U. Metamaterial absorber based on Minkowski fractal patch for stealth applications. In Proceedings of the 2020 IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, India, 2–4 July 2020; pp. 1–4. [Google Scholar]
- Venneri, F.; Costanzo, S.; Massa, G.D. Fractal-shaped metamaterial absorbers for multireflections mitigation in the UHF band. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 255–258. [Google Scholar] [CrossRef]
- Costanzo, S.; Venneri, F. Miniaturized fractal reflectarray element using fixed-size patch. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1437–1440. [Google Scholar] [CrossRef]
- Oloumi, D.; Ebadi, S.; Kordzadeh, A.; Semnani, A.; Mousavi, P.; Gong, X. Miniaturized reflectarray unit cell using fractal-shaped patch-slot configuration. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 10–13. [Google Scholar] [CrossRef]
- Khuyen, B.X.; Tung, B.S.; Yoo, Y.J.; Kim, Y.J.; Lam, V.D.; Yang, J.G.; Lee, Y.P. Ultrathin metamaterial-based perfect absorbers for VHF and THz bands. Curr. Appl. Phys. 2016, 16, 1009–1014. [Google Scholar] [CrossRef]
- Kim, S.; Kim, D.K.; Kim, Y.; Choi, J.; Jung, K.-Y. A 24 GHz ISM-band Doppler radar antenna with high isolation characteristic for moving target sensing applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1532–1536. [Google Scholar] [CrossRef]
Frequency Band | P | L | S | C | X | Ku | Ka |
---|---|---|---|---|---|---|---|
Frequency (GHz) | 0.3–1 | 1–2 | 2–4 | 4–8 | 8–12 | 12–18 | 27–40 |
h (mm) (Wavelength at 35 GHz) | Polarization | Gain (dBi) (@ θ = 0°) | FBR (dB) |
---|---|---|---|
1 (0.12 λ0) | V | 10.81 | 20.66 |
H | 10.23 | 22.24 | |
2 (0.23 λ0) | V | 10.89 | 23.6 |
H | 10.69 | 22.25 | |
3 (0.35 λ0) | V | 10.89 | 27.36 |
H | 10.78 | 22.76 | |
4 (0.47 λ0) | V | 10.88 | 15.12 |
H | 10.77 | 18.1 | |
5 (0.58 λ0) | V | 12.39 | 8.82 |
H | 11 | 10.64 |
h (mm) (Wavelength at 35 GHz) | Polarization | −10 dB Reflection Coefficient Band (GHz) |
---|---|---|
1 (0.12 λ0) | V | 31.66–36.17 |
H | 29.05–37.61 | |
2 (0.23 λ0) | V | 32.58–38.10 |
H | 29.33–36.99 | |
3 (0.35 λ0) | V | 32.90–37.72 |
H | 32.21–36.89 | |
4 (0.47 λ0) | V | 33.04–35.62 |
H | 32.27–39.63 | |
5 (0.58 λ0) | V | 33.50–36.10 |
H | 27.78–37.24 |
Frequency (MHz) | Gain (dBi) (@ θ = 0°) | FBR (dB) |
---|---|---|
450 | 4.49 | 7.42 |
580 | 2.62 | 2.37 |
700 | 4.23 | 3.04 |
Structure | −10 dB Reflection Coefficient Band | Isolation (|SMN|) in Target Band |
Without metamaterial absorber | 433.81–796.3 MHz | |SMN| < 19.2 dB |
With metamaterial absorber | 311.26–838.12 MHz | |SMN| > 23.44 dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, D.; Choi, J. A Dual-Band Dual-Polarized Antenna with Improved Isolation Characteristics for Polarimetric SAR Applications. Appl. Sci. 2021, 11, 10025. https://doi.org/10.3390/app112110025
Park D, Choi J. A Dual-Band Dual-Polarized Antenna with Improved Isolation Characteristics for Polarimetric SAR Applications. Applied Sciences. 2021; 11(21):10025. https://doi.org/10.3390/app112110025
Chicago/Turabian StylePark, Daesung, and Jaehoon Choi. 2021. "A Dual-Band Dual-Polarized Antenna with Improved Isolation Characteristics for Polarimetric SAR Applications" Applied Sciences 11, no. 21: 10025. https://doi.org/10.3390/app112110025
APA StylePark, D., & Choi, J. (2021). A Dual-Band Dual-Polarized Antenna with Improved Isolation Characteristics for Polarimetric SAR Applications. Applied Sciences, 11(21), 10025. https://doi.org/10.3390/app112110025