Study of Mesh Pattern for Optically Transparent Flexible Antenna with Feedline
Abstract
:1. Introduction
2. OT of the Mesh
3. Meshed Feedline and Antenna
3.1. Meshed Feed Line
3.1.1. Square-Meshed Feedline
3.1.2. Diamond-Meshed Feedline
3.2. Meshed Antenna
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saberin, J.R.; Furse, C. Challenges with Optically Transparent Patch Antennas. IEEE Antennas Propag. Mag. 2012, 54, 10–16. [Google Scholar] [CrossRef]
- Liu, X.; Jackson, D.R.; Chen, J.; Liu, J.; Fink, P.W.; Lin, G.Y.; Neveu, N. Transparent and nontransparent microstrip antennas on a cubesat: Novel low-profile antennas for cubesats improve mission reliability. IEEE Antennas Propag. Mag. 2017, 59, 59–68. [Google Scholar] [CrossRef]
- Lombardi, J.; Malay, R.; Schaffner, J.; Song, H.J.; Huang, M.-H.; Pollard, S.; Poliks, M.; Talty, T. Copper Transparent Antennas on Flexible Glass by Subtractive and Semi-Additive Fabrication for Automotive Applications. In Proceedings of the 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 29 May–1 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 2107–2115. [Google Scholar]
- Kim, I.K.; Wang, H.; Weiss, S.J.; Varadan, V.V. Embedded wideband metaresonator antenna on a high-impedance ground plane for vehicular applications. IEEE Trans. Veh. Tech. 2012, 61, 1665–1672. [Google Scholar] [CrossRef]
- Guillén, C.; Herrero, J. TCO/metal/TCO structures for energy and flexible electronics. Thin Solid Film. 2011, 520, 1–17. [Google Scholar] [CrossRef]
- Simons, R.N.; Lee, R.Q. Feasibility Study of Optically Transparent Microstrip Patch Antenna. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Montreal, QC, Canada, 13–18 July 1997. [Google Scholar]
- Simons, R.N.; Lee, R.Q. Optically Transparent Microstrip Patch and Slot Antennas. U.S. Patent 5,872,542, 16 February 1999. [Google Scholar]
- Peter, T.; Nilavalan, R. Study on the Performance Deterioration of Flexible UWB Antennas. In Proceedings of the 2009 Loughborough Antennas Propagation Conference (LAPC), Loughborough, UK, 16–17 November 2009. [Google Scholar]
- Serra, C.C.; Medeiros, C.R.; Costa, J.R.; Fernandes, C.A. Mirror-Integrated Transparent Antenna for RFID Application. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 776–779. [Google Scholar] [CrossRef] [Green Version]
- Guan, N.; Furuya, N.; Delaune, D.; Ito, K. Antennas made of transparent conductive films. PIERS Online 2008, 4, 116–120. [Google Scholar]
- Thampy, A.S.; Dhamodharan, S.K. Performance analysis and comparison of ITO-and FTO-based optically transparent terahertz U-shaped patch antennas. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 66, 52–58. [Google Scholar] [CrossRef]
- Colombel, F.; Castel, X.; Himdi, M.; Legeay, G. Ultrathin metal layer, ITO film and ITO/Cu/ITO multilayer towards transparent antenna. Meas. Sci. Technol. 2009, 3, 229–234. [Google Scholar] [CrossRef]
- Hong, S.; Kang, S.H.; Kim, Y.; Jung, C.W. Transparent and flexible antenna for wearable glasses applications. IEEE Trans. Antennas Propag. 2016, 64, 2797–2804. [Google Scholar] [CrossRef]
- Khan, A.; Lee, S.; Jang, T.; Xiong, Z.; Zhang, C.; Tang, J.; Guo, L.J.; Li, W.D. High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process. Small 2016, 12, 3021–3030. [Google Scholar] [CrossRef] [PubMed]
- Hautcoeur, J.; Talbi, L.; Hettak, K. Feasibility study of optically transparent CPW-fed monopole antenna at 60-GHz ISM bands. IEEE Trans. Antennas Propag. 2013, 61, 1651–1657. [Google Scholar] [CrossRef]
- Kang, S.H.; Jung, C.W. Transparent patch antenna using metal mesh. IEEE Trans. Antennas Propag. 2018, 66, 2095–2100. [Google Scholar] [CrossRef]
- Clasen, G.; Langley, R. Meshed patch antennas. IEEE Trans. Antennas Propag. 2004, 52, 1412–1416. [Google Scholar] [CrossRef]
- Hautcoeur, J.; Colombel, F.; Castel, X.; Himdi, M.; Cruz, E.M. Radiofrequency performances of transparent ultra-wideband antennas. Prog. Electromagn. Res. C 2011, 22, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.; Castel, X.; Lafond, O.; Himdi, M. Optically transparent frequency-agile antenna for X-band applications. Electron. Lett. 2015, 51, 1231–1233. [Google Scholar] [CrossRef]
- Jilani, S.F.; Abbasi, Q.H.; Alomainy, A. Inkjet-Printed MillimetreWave PET-Based Flexible Antenna for 5G Wireless Applications. In Proceedings of the 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G), Dublin, Ireland, 30–31 August 2018. [Google Scholar]
- Wawrzyniak, M.; Bras, J.; Denneulin, A.; Vuong, T.P. Influence of Mesh Geometries on the Design of Transparent Antennas at 2.45 GHz. In Proceedings of the 49th European Microwave Conference (EuMC), Paris, France, 2–4 October 2019. [Google Scholar]
- Park, J.; Lee, S.Y.; Kim, J.; Park, D.; Choi, W.; Hong, W. An Optically Invisible Antenna-on-Display Concept for Millimeter-Wave 5G Cellular Devices. IEEE Trans. Antennas Propag. 2019, 67, 2942–2952. [Google Scholar] [CrossRef]
- Ma, H.; Liu, Z.; Heo, S.; Lee, J.; Na, K.; Jin, H.B.; Jung, S.; Park, K.; Kim, J.J.; Bien, F. On-display transparent half-diamond pattern capacitive fingerprint sensor compatible with AMOLED display. IEEE Sens. J. 2016, 16, 8124–8131. [Google Scholar] [CrossRef]
- Lee, S.Y.; Choi, D.; Youn, Y.; Hong, W. Electrical Characterization of Highly Efficient, Optically Transparent Nanometers-Thick Unit Cells for Antenna-on-Display Applications. In Proceedings of the 2018 IEEE MTT-S International Microwave Symposium (IMS), Philadelphia, PA, USA, 10–15 June 2018. [Google Scholar]
- Duy Tung, P.; Jung, C.W. Optically transparent wideband dipole and patch external antennas using metal mesh for UHD TV applications. IEEE Trans. Antennas Propag. 2020, 68, 1907–1917. [Google Scholar] [CrossRef]
- Hautcoeur, J.; Castel, X.; Colombel, F.; Benzerga, R.; Himdi, M.; Legeay, G.; Motta-Cruz, E. Transparency and electrical properties of meshed metal films. Thin Solid Film. 2011, 519, 3851–3858. [Google Scholar] [CrossRef]
Value | Antenna w/o Meshed Feedline | Antenna w/Meshed Feedline | ||
---|---|---|---|---|
OT (%) | Square | Diamond | Square | Diamond |
82 | 82 | 85 | 85 | |
Peak gain (dBi) | 3.65 | 3.64 | 3.56 | 3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.; Lee, S.; Lee, H.; Park, Y.B. Study of Mesh Pattern for Optically Transparent Flexible Antenna with Feedline. Appl. Sci. 2021, 11, 10002. https://doi.org/10.3390/app112110002
Yu S, Lee S, Lee H, Park YB. Study of Mesh Pattern for Optically Transparent Flexible Antenna with Feedline. Applied Sciences. 2021; 11(21):10002. https://doi.org/10.3390/app112110002
Chicago/Turabian StyleYu, Seulgi, Soyeong Lee, Hoosung Lee, and Yong Bae Park. 2021. "Study of Mesh Pattern for Optically Transparent Flexible Antenna with Feedline" Applied Sciences 11, no. 21: 10002. https://doi.org/10.3390/app112110002
APA StyleYu, S., Lee, S., Lee, H., & Park, Y. B. (2021). Study of Mesh Pattern for Optically Transparent Flexible Antenna with Feedline. Applied Sciences, 11(21), 10002. https://doi.org/10.3390/app112110002