New Sintered Porous Scaffolds of Mg,Sr Co-Substituted Hydroxyapatite Support Growth and Differentiation of Primary Human Osteoblasts In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apatites
2.2. Scanning Electron Microscopy (SEM)
2.3. Primary Osteoblasts
2.4. Cell Viability Assessment: MTT
2.5. Protein Quantitation
2.6. Biocompatibility Assessment: Indirect Test
2.7. Biocompatibility Assessment: Direct Contact Test
2.8. Alkaline Phosphatase Staining Assay
2.9. Statistical Analysis
3. Results
3.1. SEM Evaluation
3.2. Biocompatibility Assessment
3.3. Cell Viability Assays
3.4. Alkaline Phosphatase Staining
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, A.; Schwartz, Z.; Kahn, A.; Li, X.; Shao, Z.; Sun, M.; Ao, Y.; Boyan, B.D.; Chen, H. Advances in Porous Scaffold Design for Bone and Cartilage Tissue Engineering and Regeneration. Tissue Eng. Part B Rev. 2019, 25, 14–29. [Google Scholar] [CrossRef]
- Pereira, H.F.; Cengiz, I.F.; Silva, F.; Reis, R.L.; Oliveira, J.M. Scaffolds and coatings for bone regeneration. J. Mater. Sci. Mater. Med. 2020, 31, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bigi, A.; Boanini, E. Functionalized Biomimetic Calcium Phosphates for Bone Tissue Repair. J. Appl. Biomater. Funct. Mater. 2017, 15, e313–e325. [Google Scholar] [CrossRef]
- Tampieri, A.; Celotti, G.; Landi, E. From biomimetic apatites to biologically inspired composites. Anal. Bioanal. Chem. 2005, 381, 568–576. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Yue, J.; Wang, Y.; Yang, C.; Cui, Q. High magnesium prevents matrix vesicle-mediated mineralization in human bone marrow-derived mesenchymal stem cells via mitochondrial pathway and autophagy. Cell Biol. Int. 2017, 42, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejska, B.; Stępień, N.; Kolmas, J. The Influence of Strontium on Bone Tissue Metabolism and Its Application in Osteoporosis Treatment. Int. J. Mol. Sci. 2021, 22, 6564. [Google Scholar] [CrossRef] [PubMed]
- Lavet, C.; Mabilleau, G.; Chappard, D.; Rizzoli, R.; Ammann, P. Strontium ranelate stimulates trabecular bone formation in a rat tibial bone defect healing process. Osteoporos. Int. 2017, 28, 3475–3487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuzu, Y.; Fujibayashi, S.; Yamaguchi, S.; Yamamoto, K.; Shimizu, T.; Sono, T.; Goto, K.; Otsuki, B.; Matsushita, T.; Kokubo, T.; et al. Strontium and magnesium ions released from bioactive titanium metal promote early bone bonding in a rabbit implant model. Acta Biomater. 2017, 63, 383–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sartori, M.; Giavaresi, G.; Tschon, M.; Martini, L.; Dolcini, L.; Fiorini, M.; Pressato, D.; Fini, M. Long-term in vivo experimental investigations on magnesium doped hydroxyapatite bone substitutes. J. Mater. Sci. Mater. Electron. 2014, 25, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Landi, E.; Uggeri, J.; Medri, V.; Guizzardi, S. Sr, Mg cosubstituted HA porous macro-granules: Potentialities as resorbable bone filler with antiosteoporotic functions. J. Biomed. Mater. Res. Part A 2013, 101A, 2481–2490. [Google Scholar] [CrossRef]
- Landi, E.; Guizzardi, S.; Papa, E.; Galli, C. Mg,Sr-Cosubstituted Hydroxyapatite with Improved Structural Properties. Appl. Sci. 2021, 11, 4930. [Google Scholar] [CrossRef]
- Galli, C.; Guizzardi, S.; Passeri, G.; Martini, D.; Tinti, A.; Mauro, G.; Macaluso, G.M. Comparison of Human Mandibular Osteoblasts Grown on Two Commercially Available Titanium Implant Surfaces. J. Periodontol. 2005, 76, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Passeri, G.; Cacchioli, A.; Ravanetti, F.; Galli, C.; Elezi, E.; Macaluso, G.M. Adhesion pattern and growth of primary human osteoblastic cells on five commercially available titanium surfaces. Clin. Oral Implant. Res. 2010, 21, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Guizzardi, S.; Galli, C.; Martini, D.; Belletti, S.; Tinti, A.; Raspanti, M.; Taddei, P.; Ruggeri, A.; Scandroglio, R. Different Titanium Surface Treatment Influences Human Mandibular Osteoblast Response. J. Periodontol. 2004, 75, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Galli, C.; Macaluso, G.M.; Guizzardi, S.; Vescovini, R.; Passeri, M.; Passeri, G. Osteoprotegerin and Receptor Activator of Nuclear Factor-Kappa B Ligand Modulation by Enamel Matrix Derivative in Human Alveolar Osteoblasts. J. Periodontol. 2006, 77, 1223–1228. [Google Scholar] [CrossRef]
- Gallagher, J.A.; Gundle, R.; Beresford, J.N.; Jones, G.E. Isolation and Culture of Bone-Forming Cells (Osteoblasts) from Human. Bone 2003, 2, 233–262. [Google Scholar] [CrossRef]
- Beresford, J.; Gallagher, J.; Poser, J.; Russell, R.G.G. Production of osteocalcin by human bone cells in vitro. Effects of 1,25(OH)2D3, 24,25(OH)2D3, parathyroid hormone, and glucocorticoids. Metab. Bone Dis. Relat. Res. 1984, 5, 229–234. [Google Scholar] [CrossRef]
- Farley, J.R.; Hall, S.L.; Tanner, M.A.; Wergedal, J.E. Specific activity of skeletal alkaline phosphatase in human osteoblast-line cells regulated by phosphate, phosphate esters, and phosphate analogs and release of alkaline phosphatase activity inversely regulated by calcium. J Bone Miner Res. 1994, 9, 497–508. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Wang, C.-S.; Smith, R.L. Lowry determination of protein in the presence of Triton X-100. Anal. Biochem. 1975, 63, 414–417. [Google Scholar] [CrossRef]
- Ziomek, C.A.; Lepire, M.L.; Torres, I. A highly fluorescent simultaneous azo dye technique for demonstration of nonspecific alkaline phosphatase activity. J. Histochem. Cytochem. 1990, 38, 437–442. [Google Scholar] [CrossRef] [Green Version]
- ISO 10993-5. Biological Evaluation of Medical Devices—Part 5: Tests for Cytotoxicity: In vitro Methods, 3rd ed.; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- Fini, M.; Giardino, R. In vitro and in vivo tests for the biological evaluation of candidate orthopedic materials: Benefits and limits. J. Appl. Biomater. Biomech. 2010, 1, 155–163. [Google Scholar]
- Torricelli, P.; Fini, M.; Giavaresi, G.; Giardino, R. In vitro Models to Test Orthopedic Biomaterials in View of Their Clinical Application in Osteoporotic Bone. Int. J. Artif. Organs 2004, 27, 658–663. [Google Scholar] [CrossRef]
- Gatti, R.; Orlandini, G.; Uggeri, J.; Belletti, S.; Galli, C.; Raspanti, M.; Scandroglio, R.; Guizzardi, S. Analysis of living cells grown on different titanium surfaces by time-lapse confocal microscopy. Micron 2006, 39, 137–143. [Google Scholar] [CrossRef]
- Guizzardi, S.; Galli, C.; Govoni, P.; Boratto, R.; Cattarini, G.; Martini, D.; Belletti, S.; Scandroglio, R. Polydeoxyribonucleotide (PDRN) promotes human osteoblast proliferation: A new proposal for bone tissue repair. Life Sci. 2003, 73, 1973–1983. [Google Scholar] [CrossRef]
- Matsushima, A.; Kotobuki, N.; Tadokoro, M.; Kawate, K.; Yajima, H.; Takakura, Y.; Ohgushi, H. In Vivo Osteogenic Capability of Human Mesenchymal Cells Cultured on Hydroxyapatite and on β-Tricalcium Phosphate. Artif. Organs 2009, 33, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, M.; Dohi, Y.; Ohgushi, H.; Shimaoka, H.; Ikeuchi, M.; Matsushima, A.; Yonemasu, K.; Hosoi, H. Influence of the porosity of hydroxyapatite ceramics on in vitro and in vivo bone formation by cultured rat bone marrow stromal cells. J. Mater. Sci. Mater. Electron. 2006, 17, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, A.; Lode, A.; Peters, F.; Gelinsky, M. Novel ceramic bone replacement material Osbone® in a comparative in vitro study with osteoblasts. Clin. Oral Implant. Res. 2011, 22, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Hutmacher, D.W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000, 21, 2529–2543. [Google Scholar] [CrossRef]
- Gao, J.; Wang, M.; Shi, C.; Wang, L.; Wang, D.; Zhu, Y. Synthesis of trace element Si and Sr codoping hydroxyapatite with non-cytotoxicity and enhanced cell proliferation and differentiation. Biol. Trace Element Res. 2016, 174, 208–217. [Google Scholar] [CrossRef]
- Singh, S.S.; Roy, A.; Lee, B.; Parekh, S.; Kumta, P.N. Murine osteoblastic and osteoclastic differentiation on strontium releasing hydroxyapatite forming cements. Mater. Sci. Eng. C 2016, 63, 429–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, P.; Feng, F.F.; Lei, T.; Zhong, X.H.; Jian, X.C. Osteoblastic cell response on biphasic fluorhydroxyapatite/strontium-substituted hydroxyapatite coatings. J. Biomed. Mater. Res. Part A 2013, 102, 621–627. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galli, C.; Landi, E.; Belletti, S.; Colangelo, M.T.; Guizzardi, S. New Sintered Porous Scaffolds of Mg,Sr Co-Substituted Hydroxyapatite Support Growth and Differentiation of Primary Human Osteoblasts In Vitro. Appl. Sci. 2021, 11, 9723. https://doi.org/10.3390/app11209723
Galli C, Landi E, Belletti S, Colangelo MT, Guizzardi S. New Sintered Porous Scaffolds of Mg,Sr Co-Substituted Hydroxyapatite Support Growth and Differentiation of Primary Human Osteoblasts In Vitro. Applied Sciences. 2021; 11(20):9723. https://doi.org/10.3390/app11209723
Chicago/Turabian StyleGalli, Carlo, Elena Landi, Silvana Belletti, Maria Teresa Colangelo, and Stefano Guizzardi. 2021. "New Sintered Porous Scaffolds of Mg,Sr Co-Substituted Hydroxyapatite Support Growth and Differentiation of Primary Human Osteoblasts In Vitro" Applied Sciences 11, no. 20: 9723. https://doi.org/10.3390/app11209723
APA StyleGalli, C., Landi, E., Belletti, S., Colangelo, M. T., & Guizzardi, S. (2021). New Sintered Porous Scaffolds of Mg,Sr Co-Substituted Hydroxyapatite Support Growth and Differentiation of Primary Human Osteoblasts In Vitro. Applied Sciences, 11(20), 9723. https://doi.org/10.3390/app11209723