An Immersive Virtual Reality Game for Predicting Risk Taking through the Use of Implicit Measures
Abstract
:Featured Application
Abstract
1. Introduction
Personality, Sensation Seeking, Impulsivity and RT
2. Measurement of RT
2.1. Virtual Reality for RT Assessment
2.2. Implicit Measures in VR
2.3. The Current Study
3. Materials and Methods
3.1. Participants
3.2. Self-Reported Measures
3.3. The Virtual Environment
3.4. Experimental Procedure
3.5. Data Processing
3.6. Statistical Analysis
4. Results
5. Discussion
5.1. Accuracy of the Models to Discriminate RT Domains
5.1.1. Personality Recognition
5.1.2. Sensation Seeking Recognition
5.1.3. Impulsivity Recognition
5.2. Influence of the Features Used in Each Model Selected
5.2.1. Influence of VR Features
5.2.2. Influence of ET Features
5.2.3. Influence of GSR Features
5.3. Limitations and Further Studies
5.4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bechara, A.; Damasio, H.; Tranel, D.; Damasio, A. The Iowa Gambling Task and the somatic marker hypothesis: Some questions and answers. Trends Cogn. Sci. 2005, 9, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Krain, A.L.; Wilson, A.M.; Arbuckle, R.; Castellanos, F.X.; Milham, M.P. Distinct neural mechanisms of risk and ambiguity: A meta-analysis of decision-making. NeuroImage 2006, 32, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Einhorn, H.J. The use of nonlinear, noncompensatory models in decision making. Psychol. Bull. 1970, 73, 221–230. [Google Scholar] [CrossRef]
- Hunt, R.G.; Krzystofiak, F.J.; Meindl, J.R.; Yousry, A.M. Cognitive style and decision making. Organ. Behav. Hum. Decis. Process. 1989, 44, 436–453. [Google Scholar] [CrossRef]
- Appelt, K.C.; Milch, K.F.; Handgraaf, M.J.J.; Weber, E.U. The decision making individual differences inventory and guidelines for the study of individual differences in judgment and decision-making research. Judgm. Decis. Mak. 2011, 6, 252–262. [Google Scholar]
- Dror, I.E.; Basola, B.; Busemeyer, J.R. Decision making under time pressure: An independent test of sequential sampling models. Mem. Cogn. 1999, 27, 713–725. [Google Scholar] [CrossRef]
- Figner, B.; Weber, E.U. Who Takes Risks When and Why? Curr. Dir. Psychol. Sci. 2011, 20, 211–216. [Google Scholar] [CrossRef]
- Zuckerman, M.; Kuhlman, D.M. Personality and Risk-Taking: Common Bisocial Factors. J. Pers. 2000, 68, 999–1029. [Google Scholar] [CrossRef]
- Fessler, D.M.T. Emotions and cost–benefit assessment: The role of shame and self-esteem in risk taking. In Bounded Rationality: The Adaptive Toolbox; Gigerenzer, G., Selten, R., Eds.; The MIT Press: Cambridge, MA, USA, 2001; pp. 191–214. [Google Scholar]
- Isen, A.M.; Simmonds, S.F. The Effect of Feeling Good on a Helping Task that is Incompatible with Good Mood. Soc. Psychol. 1978, 41, 346–349. [Google Scholar] [CrossRef]
- Arkes, H.R.; Herren, L.T.; Isen, A.M. The role of potential loss in the influence of affect on risk-taking behavior. Organ. Behav. Hum. Decis. Process. 1988, 42, 181–193. [Google Scholar] [CrossRef]
- Nguyen, Y.; Noussair, C.N. Risk Aversion and Emotions. Pac. Econ. Rev. 2014, 19, 296–312. [Google Scholar] [CrossRef]
- Raffaelli, M.; Crockett, L.J. Sexual Risk Taking in Adolescence: The Role of Self-Regulation and Attraction to Risk. Dev. Psychol. 2003, 39, 1036–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCrae, R.R.; Costa, P.T., Jr. Conceptions and correlates of openness to experience. In Handbook of Personality Psychology; Academic Press: Cambridge, MA, USA, 1997; pp. 825–847. [Google Scholar] [CrossRef]
- Elliot, A.J.; Thrash, T.M. Approach and Avoidance Temperament as Basic Dimensions of Personality. J. Pers. 2010, 78, 865–906. [Google Scholar] [CrossRef] [PubMed]
- Gullone, E.; Moore, S. Adolescent risk-taking and the five-factor model of personality. J. Adolesc. 2000, 23, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, R.H.; Fejfar, M.C.; Miller, J.D. Personality and Sexual Risk Taking: A Quantitative Review. J. Pers. 2000, 68, 1203–1231. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, N.; Soane, E.; Fenton-O’Creevy, M.; Willman, P. Personality and domain-specific risk taking. J. Risk Res. 2005, 8, 157–176. [Google Scholar] [CrossRef]
- Schwebel, D.C.; Severson, J.; Ball, K.K.; Rizzo, M. Individual difference factors in risky driving: The roles of anger/hostility, conscientiousness, and sensation-seeking. Accid. Anal. Prev. 2006, 38, 801–810. [Google Scholar] [CrossRef]
- Lauriola, M.; Levin, I.P. Personality traits and risky decision-making in a controlled experimental task: An exploratory study. Pers. Individ. Differ. 2001, 31, 215–226. [Google Scholar] [CrossRef]
- Zuckerman, M. Behavioral Expressions and Biosocial Bases of Sensation Seeking; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Donohew, L.; Zimmerman, R.; Cupp, P.S.; Novak, S.; Colon, S.; Abell, R. Sensation seeking, impulsive decision-making, and risky sex: Implications for risk-taking and design of interventions. Pers. Individ. Differ. 2000, 28, 1079–1091. [Google Scholar] [CrossRef]
- Netter, P.; Hennig, J.; Roed, I. Serotonin and Dopamine as Mediators of Sensation Seeking Behavior. Neuropsychobiology 1996, 34, 155–165. [Google Scholar] [CrossRef]
- Roberti, J.W. A review of behavioral and biological correlates of sensation seeking. J. Res. Pers. 2004, 38, 256–279. [Google Scholar] [CrossRef]
- De Vries, R.E.; de Vries, A.; Feij, J.A. Sensation seeking, risk-taking, and the HEXACO model of personality. Pers. Individ. Differ. 2009, 47, 536–540. [Google Scholar] [CrossRef]
- Zuckerman, M. Biosocial bases of sensation seeking. In Biology of Personality and Individual Differences; The Guilford Press: New York, NY, USA, 2006; pp. 37–59. [Google Scholar]
- Moeller, F.G.; Barratt, E.S.; Dougherty, D.M.; Schmitz, J.M.; Swann, A.C. Psychiatric Aspects of Impulsivity. Am. J. Psychiatry 2001, 158, 1783–1793. [Google Scholar] [CrossRef] [PubMed]
- De Wit, H. Impulsivity as a determinant and consequence of drug use: A review of underlying processes. Addict. Biol. 2008, 14, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Stanford, M.S.; Greve, K.W.; Boudreaux, J.K.; Mathias, C.W.; Brumbelow, J.L. Impulsiveness and risk-taking behavior: Comparison of high-school and college students using the Barratt Impulsiveness Scale. Pers. Individ. Differ. 1996, 21, 1073–1075. [Google Scholar] [CrossRef]
- Cooper, M.L.; Agocha, V.B.; Sheldon, M.S. A Motivational Perspective on Risky Behaviors: The Role of Personality and Affect Regulatory Processes. J. Pers. 2000, 68, 1059–1088. [Google Scholar] [CrossRef]
- Boyer, T.W. The development of risk-taking: A multi-perspective review. Dev. Rev. 2006, 26, 291–345. [Google Scholar] [CrossRef]
- Whiteside, S.P.; Lynam, D.R. The Five Factor Model and impulsivity: Using a structural model of personality to understand impulsivity. Pers. Individ. Differ. 2001, 30, 669–689. [Google Scholar] [CrossRef]
- Whiteside, S.P.; Lynam, D.R.; Miller, J.D.; Reynolds, S.K. Validation of the UPPS impulsive behaviour scale: A four-factor model of impulsivity. Eur. J. Pers. 2005, 19, 559–574. [Google Scholar] [CrossRef]
- Lejuez, C.W.; Read, J.P.; Kahler, C.W.; Richards, J.B.; Ramsey, S.E.; Stuart, G.L.; Strong, D.R.; Brown, R.A. Evaluation of a behavioral measure of risk taking: The Balloon Analogue Risk Task (BART). J. Exp. Psychol. Appl. 2002, 8, 75–84. [Google Scholar] [CrossRef]
- Skeel, R.L.; Neudecker, J.; Pilarski, C.; Pytlak, K. The utility of personality variables and behaviorally-based measures in the prediction of risk-taking behavior. Pers. Individ. Differ. 2007, 43, 203–214. [Google Scholar] [CrossRef]
- Horvath, P.; Zuckerman, M. Sensation seeking, risk appraisal, and risky behavior. Pers. Individ. Differ. 1993, 14, 41–52. [Google Scholar] [CrossRef]
- Lejuez, C.W.; Aklin, W.M.; Zvolensky, M.J.; Pedulla, C.M. Evaluation of the Balloon Analogue Risk Task (BART) as a predictor of adolescent real-world risk-taking behaviours. J. Adolesc. 2003, 26, 475–479. [Google Scholar] [CrossRef]
- Blais, A.R.; Weber, E.U. A domain-specific risk-taking (DOSPERT) scale for adult populations. Judgm. Decis. Mak. 2006, 1, 37–47. [Google Scholar]
- Barsade, S.G.; Ramarajan, L.; Westen, D. Implicit affect in organizations. Res. Organ. Behav. 2009, 29, 135–162. [Google Scholar] [CrossRef]
- Becker, W.J.; Cropanzano, R.; Sanfey, A.G. Organizational Neuroscience: Taking Organizational Theory Inside the Neural Black Box. J. Manag. 2011, 37, 933–961. [Google Scholar] [CrossRef]
- George, J.M. The Illusion of Will in Organizational Behavior Research: Nonconscious Processes and Job Design. J. Manag. 2009, 35, 1318–1339. [Google Scholar] [CrossRef]
- Kivikangas, J.M.; Chanel, G.; Cowley, B.; Ekman, I.; Salminen, M.; Järvelä, S.; Ravaja, N. A review of the use of psychophysiological methods in game research. J. Gaming Virtual Worlds 2011, 3, 181–199. [Google Scholar] [CrossRef]
- Shute, V.J. Stealth assessment in computer-based games to support learning. Comput. Games Instr. 2011, 55, 503–524. [Google Scholar]
- Shute, V.J.; Wang, L.; Greiff, S.; Zhao, W.; Moore, G.R. Measuring problem solving skills via stealth assessment in an engaging video game. Comput. Hum. Behav. 2016, 63, 106–117. [Google Scholar] [CrossRef]
- Mayer, I.; Bekebrede, G.; Warmelink, H.; Zhou, Q. A brief methodology for researching and evaluating serious games and game-based learning. In Psychology, Pedagogy, and Assessment in Serious Games; IGI Global: Hershey, PA, USA, 2014; pp. 357–393. [Google Scholar] [CrossRef] [Green Version]
- Bechara, A.; Damasio, A.R.; Damasio, H.; Anderson, S.W. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 1994, 50, 7–15. [Google Scholar] [CrossRef]
- Buelow, M.T.; Suhr, J.A. Construct Validity of the Iowa Gambling Task. Neuropsychol. Rev. 2009, 19, 102–114. [Google Scholar] [CrossRef] [PubMed]
- White, T.L.; Lejuez, C.W.; De Wit, H. Test-retest characteristics of the Balloon Analogue Risk Task (BART). Exp. Clin. Psychopharmacol. 2008, 16, 565–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manchester, D.; Priestley, N.; Jackson, H. The assessment of executive functions: Coming out of the office. Brain Inj. 2004, 18, 1067–1081. [Google Scholar] [CrossRef] [PubMed]
- Sbordone, R.J. Ecological validity of neuropsychological testing: Critical issues. In Neuropsychology Handbook; Springer: New York, NY, USA, 2008; pp. 367–394. [Google Scholar]
- Bottari, C.; Dassa, C.; Rainville, C.; Dutil, E. The factorial validity and internal consistency of the Instrumental Activities of Daily Living Profile in individuals with a traumatic brain injury. Neuropsychol. Rehabil. 2009, 19, 177–207. [Google Scholar] [CrossRef] [PubMed]
- Alcañiz, M.; Lozano, J.A.; Rey, B. Technological background of VR. Stud. Health Technol. Inform. 2003, 99, 199–214. [Google Scholar]
- Tarr, M.J.; Warren, W.H. Virtual reality in behavioral neuroscience and beyond. Nat. Neurosci. 2002, 5, 1089–1092. [Google Scholar] [CrossRef]
- Alcañiz, M.; Rey, B.; Tembl, J.; Parkhutik, V. A Neuroscience Approach to Virtual Reality Experience Using Transcranial Doppler Monitoring. Presence Teleoperators Virtual Environ. 2009, 18, 97–111. [Google Scholar] [CrossRef]
- Parsons, T. Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affective and Social Neurosciences. Front. Hum. Neurosci. 2015, 9, 660. [Google Scholar] [CrossRef] [Green Version]
- Giglioli, I.A.C.; de-Juan-Ripoll, C.; Parra, E.; Raya, M.A. Are 3D virtual environments better than 2D interfaces in serious games performance? An explorative study for the assessment of executive functions. Appl. Neuropsychol. Adult 2019, 1–10. [Google Scholar] [CrossRef]
- De-Juan-Ripoll, C.; Soler-Domínguez, J.L.; Guixeres, J.; Contero, M.; Gutiérrez Álvarez, N.; Alcañiz, M. Virtual Reality as a New Approach for Risk Taking Assessment. Front. Psychol. 2018, 9, 2532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De-Juan-Ripoll, C.; Soler-Domínguez, J.L.; Giglioli, I.A.C.; Contero, M.; Alcañiz, M. The Spheres & Shield Maze Task: A Virtual Reality Serious Game for the Assessment of Risk Taking in Decision Making. Cyberpsychol. Behav. Soc. Netw. 2020, 23, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Glöckner, A.; Herbold, A.-K. An eye-tracking study on information processing in risky decisions: Evidence for compensatory strategies based on automatic processes. J. Behav. Decis. Mak. 2010, 24, 71–98. [Google Scholar] [CrossRef]
- Knoblich, G.; Ohlsson, S.; Raney, G.E. An eye movement study of insight problem solving. Mem. Cogn. 2001, 29, 1000–1009. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.W.; Kim, D.; Jung, S. Using Eye-Tracking Technology to Measure Environmental Factors Affecting Street Robbery Decision-Making in Virtual Environments. Sustainability 2020, 12, 7419. [Google Scholar] [CrossRef]
- Pettersson, J.; Albo, A.; Eriksson, J.; Larsson, P.; Falkman, K.W.; Falkman, P. Cognitive Ability Evaluation Using Virtual Reality and Eye Tracking. In Proceedings of the 2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, Ottawa, ON, Canada, 12–13 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Porras-Garcia, B.; Ferrer-Garcia, M.; Ghita, A.; Moreno, M.; López-Jiménez, L.; Vallvé-Romeu, A.; Serrano-Troncoso, E.; Gutiérrez-Maldonado, J. The influence of gender and body dissatisfaction on body-related attentional bias: An eye-tracking and virtual reality study. Int. J. Eat. Disord. 2019, 52, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Rojas, J.-C.; Marín-Morales, J.; Azofra, J.M.A.; Contero, M. Recognizing Decision-Making Using Eye Movement: A Case Study with Children. Front. Psychol. 2020, 11, 2542. [Google Scholar] [CrossRef]
- Kwak, Y.; Payne, J.W.; Cohen, A.L.; Huettel, S.A. The rational adolescent: Strategic information processing during decision making revealed by eye tracking. Cogn. Dev. 2015, 36, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Rao, L.-L.; Sun, H.-Y.; Du, X.-L.; Li, X.; Li, S. Is making a risky choice based on a weighting and adding process? An eye-tracking investigation. J. Exp. Psychol. Learn. Mem. Cogn. 2013, 39, 1765–1780. [Google Scholar] [CrossRef]
- Payne, J.W.; Braunstein, M.L. Risky choice: An examination of information acquisition behavior. Mem. Cogn. 1978, 6, 554–561. [Google Scholar] [CrossRef]
- Velichkovsky, B.M.; Rothert, A.; Kopf, M.; Dornhöfer, S.M.; Joos, M. Towards an express-diagnostics for level of processing and hazard perception. Transp. Res. Part F Traffic Psychol. Behav. 2002, 5, 145–156. [Google Scholar] [CrossRef]
- Habibnezhad, M.; Fardhosseini, S.; Vahed, A.M.; Esmaeili, B.; Dodd, M.D. The relationship between construction workers’ risk perception and eye movement in hazard identification. In Construction Research Congress 2016; American Society of Civil Engineers: Reston, VA, USA, 2016; pp. 2984–2994. [Google Scholar] [CrossRef]
- Nourbakhsh, N.; Wang, Y.; Chen, F. GSR and blink features for cognitive load classification. In Lecture Notes in Computer Science (LNCS); Springer: Berlin/Heidelberg, Germany, 2013; Volume 8117, pp. 159–166. [Google Scholar] [CrossRef] [Green Version]
- Ergan, S.; Radwan, A.; Zou, Z.; Tseng, H.-A.; Han, X. Quantifying Human Experience in Architectural Spaces with Integrated Virtual Reality and Body Sensor Networks. J. Comput. Civ. Eng. 2019, 33, 04018062. [Google Scholar] [CrossRef]
- Šalkevicius, J.; Damaševičius, R.; Maskeliūnas, R.; Laukienė, I. Anxiety Level Recognition for Virtual Reality Therapy System Using Physiological Signals. Electronics 2019, 8, 1039. [Google Scholar] [CrossRef] [Green Version]
- Alcañiz Raya, M.; Giglioli, I.A.C.; Marín-Morales, J.; Higuera-Trujillo, J.L.; Olmos, E.; Minissi, M.E.; Garcia, G.T.; Sirera, M.; Abad, L. Application of Supervised Machine Learning for Behavioral Biomarkers of Autism Spectrum Disorder Based on Electrodermal Activity and Virtual Reality. Front. Hum. Neurosci. 2020, 14, 90. [Google Scholar] [CrossRef] [PubMed]
- Yip, J.A.; Stein, D.H.; Côté, S.; Carney, D.R. Follow your gut? Emotional intelligence moderates the association between physiologically measured somatic markers and risk-taking. Emotion 2020, 20, 462–472. [Google Scholar] [CrossRef]
- Persson, E.; Asutay, E.; Hagman, W.; Västfjäll, D.; Tinghög, G. Affective response predicts risky choice for fast, but not slow, decisions. J. Neurosci. Psychol. Econ. 2018, 11, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Cordero, A.; Pamos, A.; Seisdedos, N. Inventario de Personalidad Neo Revisado (NEO PI-R). Inventario Neo Reducido de Cinco Factores (NEO-FFI); TEA: Madrid, Spain, 1999. (In Spanish) [Google Scholar]
- Costa, P.T.; McCrae, R.R. NEO PI/FFI manual supplement for use with the NEO Personality Inventory. In Psychological Assessment Resources; PAR Inc.: Odessa, FL, USA, 1989. [Google Scholar]
- Pérez, J.; Torrubia, R. Fiabilidad y validez de la versión española de la Escala de Búsqueda de Sensaciones (Forma V). Rev. Latinoam. Psicol. 1986, 18, 7–22. [Google Scholar] [CrossRef]
- Zuckerman, M.; Kolin, E.A.; Price, L.; Zoob, I. Development of a sensation-seeking scale. J. Consult. Psychol. 2006, 28, 477–482. [Google Scholar] [CrossRef]
- Candido, A.; Orduña, E.; Perales, J.C.; Verdejo-García, A.; Billieux, J. Validation of a short Spanish version of the UPPS-P impulsive behaviour scale. Trastor. Adict. 2012, 14, 73–78. [Google Scholar] [CrossRef]
- Lessiter, J.; Freeman, J.; Keogh, E.; Davidoff, J.B. A Cross-Media Presence Questionnaire: The ITC-Sense of Presence Inventory. Presence Teleoperators Virtual Environ. 2001, 10, 282–297. [Google Scholar] [CrossRef] [Green Version]
- So, R.H.Y.; Lo, W.T.; Ho, A.T.K. Effects of Navigation Speed on Motion Sickness Caused by an Immersive Virtual Environment. Hum. Factors J. Hum. Factors Ergon. Soc. 2001, 43, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Llanes-Jurado, J.; Marín-Morales, J.; Guixeres, J.; Alcañiz, M. Development and Calibration of an Eye-Tracking Fixation Identification Algorithm for Immersive Virtual Reality. Sensors 2020, 20, 4956. [Google Scholar] [CrossRef] [PubMed]
- Shukla, J.; Barreda-Ángeles, M.; Oliver, J.; Puig, D. Efficient wavelet-based artifact removal for electrodermal activity in real-world applications. Biomed. Signal Process. Control 2018, 42, 45–52. [Google Scholar] [CrossRef]
- Benedek, M.; Kaernbach, C. A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 2010, 190, 80–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, S.; Jaques, N.; Chen, W.; Fedor, S.; Sano, A.; Picard, R. Automatic Identification of Artifacts in Electrodermal Activity Data. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 25–29 August 2015; pp. 1934–1937. [Google Scholar] [CrossRef] [Green Version]
- Schoelkopf, B.; Smola, A.J.; Williamson, R.C.; Bartlett, P.L. New Support Vector Algorithms. Neural Comput. 2000, 12, 1207–1245. [Google Scholar] [CrossRef]
- Doak, J. An evaluation of feature selection methods and their application to computer security. In Techninal Report CSE-92-18; University of California: Berkeley, CA, USA, 1992. [Google Scholar]
- Vollrath, M.E.; Torgersen, S. Who takes health risks? A probe into eight personality types. Pers. Individ. Differ. 2002, 32, 1185–1197. [Google Scholar] [CrossRef]
- De Leo, G.; Diggs, L.A.; Radici, E.; Mastaglio, T.W. Measuring Sense of Presence and User Characteristics to Predict Effective Training in an Online Simulated Virtual Environment. Simul. Healthc. J. Soc. Simul. Healthc. 2014, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Piccione, J.; Collett, J.; De Foe, A. Virtual skills training: The role of presence and agency. Heliyon 2019, 5, e02583. [Google Scholar] [CrossRef]
- Costa, P.T.; McCrae, R.R. NEO-PI-R. Professional manual. In Psychological Assessment Resourses; PAR Inc.: Odessa, FL, USA, 1992. [Google Scholar]
- Aluja, A.; García, Ó.; García, L.F. Relationships among extraversion, openness to experience, and sensation seeking. Pers. Individ. Differ. 2003, 35, 671–680. [Google Scholar] [CrossRef]
- Al-Moteri, M.O.; Symmons, M.; Plummer, V.; Cooper, S. Eye tracking to investigate cue processing in medical decision-making: A scoping review. Comput. Hum. Behav. 2017, 66, 52–66. [Google Scholar] [CrossRef]
- Krupinski, E.A.; Nodine, C.F.; Kundel, H.L. Enhancing recognition of lesions in radiographic images using perceptual feedback. Opt. Eng. 1998, 37, 813–819. [Google Scholar] [CrossRef] [Green Version]
- Kundel, H.L.; Nodine, C.F.; Conant, E.; Weinstein, S.P. Holistic Component of Image Perception in Mammogram Interpretation: Gaze-tracking Study. Radiology 2007, 242, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Brunyé, T.T.; Gardony, A.L. Eye tracking measures of uncertainty during perceptual decision making. Int. J. Psychophysiol. 2017, 120, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Heekeren, H.R.; Marrett, S.; Ungerleider, L.G. The neural systems that mediate human perceptual decision making. Nat. Rev. Neurosci. 2008, 9, 467–479. [Google Scholar] [CrossRef]
- Sharma, M.; Kacker, S.; Sharma, M. A Brief Introduction and Review on Galvanic Skin Response. Int. J. Med. Res. Prof. 2016, 2, 13–17. [Google Scholar] [CrossRef]
- Ayata, D.; Yaslan, Y.; Kamaşak, M. Emotion Recognition via Random Forest and Galvanic Skin Response: Comparison of Time Based Feature Sets, Window Sizes and Wavelet Approaches. In Proceedings of the 2016 Medical Technologies National Congress, Antalya, Turkey, 27–29 October 2016; pp. 1–4. [Google Scholar] [CrossRef]
Risk | Description | Consequences |
---|---|---|
Bridge | Walkway that allows the robots to cross from one side to another to continue the path. Participants can cross it as many times as they like in both directions. | If a robot falls into the pit, it will lose part of the battery of its shield. Additionally, the robot reappears at the beginning of the bridge, and this supposes a little time to cross again. |
Swarm of insects | Swarm of flying insects that flits over an area of the maze. | In an insect bites a robot, it will suffer blurred vision a few seconds later, which supposes a little time to recover the normal vision. Furthermore, this makes the robot to lose energy. |
Storm | In some areas of the maze the weather is stormy. | If a lightning strikes a robot, it will suffer a large loss of energy. |
Haunted room | Room that becomes increasingly smaller when someone enters it. The room has an enter and an exit door and participants can cross them as many times as they like, in both directions. Participants are asked to catch the key inside the room to open the doors. | Opening the doors is an investment of time. |
Data Source | Risk Zone | No Risk Zone | |||
---|---|---|---|---|---|
Features | 1N | Features | 1N | ||
VR | Navigation | Time spent | 28 | Time spent | 20 |
Visits to each risk | - | ||||
Distance covered | Distance covered | ||||
Time walking | Time walking | ||||
Velocity | Velocity | ||||
Acceleration | Acceleration | ||||
Interactions | Green spheres caught | Green spheres caught | |||
- | Purple spheres caught | ||||
Pause button use | Pause button use | ||||
Shield use | Shield use | ||||
Total interactions | Total interactions | ||||
ET | Time to first fixation | 37 | Time to first fixation | 34 | |
Number of fixations | Number of fixations | ||||
Fixation duration | Fixation duration | ||||
Number of objects seen | Number of objects seen | ||||
Number of saccades | Number of saccades | ||||
Angular saccade distance | Angular saccade distance | ||||
Velocity of saccades | Velocity of saccades | ||||
Distance in saccades | Distance in saccades | ||||
GSR | Mean, std and median signal | 18 | Mean, std and median signal | 18 | |
Phasic and tonic value | Phasic and tonic value | ||||
Number of phasic peaks | Number of phasic peaks | ||||
Skewness of phasic signal | Skewness of phasic signal | ||||
Kurtosis of phasic signal | Kurtosis of phasic signal | ||||
Entropy of phasic signal | Entropy of phasic signal |
Dimension | Target Variable | Mean | 1 Std | Median | Number of Highs | Number of Lows | 2 St. Sig. |
---|---|---|---|---|---|---|---|
Personality | Neuroticism | 20.92 | 7.20 | 21 | 45 | 43 | *** |
Extraversion | 32.64 | 7.32 | 32.5 | 44 | 44 | *** | |
Openness | 32.28 | 6.65 | 33 | 45 | 43 | *** | |
Agreeableness | 31.35 | 6.12 | 31.5 | 44 | 44 | *** | |
Conscientiousness | 32.60 | 7.57 | 33.5 | 49 | 39 | *** | |
Sensation seeking | Thrill and adventure seeking | 6.75 | 2.84 | 8 | 34 | 54 | *** |
Experience seeking | 3.68 | 1.08 | 4 | 48 | 40 | *** | |
Disinhibition | 4.31 | 2.18 | 4 | 41 | 47 | *** | |
Boredom susceptibility | 3.89 | 1.87 | 4 | 51 | 37 | *** | |
Sensation seeking (overall score) | 18.63 | 5.59 | 19 | 47 | 41 | *** | |
Impulsivity | Negative urgency | 9.35 | 2.51 | 9 | 43 | 45 | *** |
Lack of premeditation | 5.58 | 1.59 | 5.5 | 44 | 44 | *** | |
Lack of perseverance | 6.82 | 230 | 7 | 48 | 40 | *** | |
Sensation seeking | 10.32 | 2.69 | 11 | 45 | 43 | *** | |
Positive urgency | 9.98 | 2.08 | 10 | 52 | 36 | *** |
Dimension | Subscale | Data s. | 1 St. Sig. | Accuracy | Kappa | 2 TPR | 3 TNR |
---|---|---|---|---|---|---|---|
Personality | Neuroticism | ALL | * | 0.73 (0.14) | 0.45 (0.29) | 0.74 (0.14) | 0.72 (0.24) |
Extraversion | ALL | ** | 0.75 (0.15) | 0.51 (0.31) | 0.81 (0.18) | 0.71 (0.19) | |
Openness | ET | *** | 0.71 (0.16) | 0.40 (0.34) | 0.78 (0.17) | 0.63 (0.30) | |
Agreeableness | ALL | - | 0.72 (0.16) | 0.43 (0.32) | 0.82 (0.17) | 0.6 (0.21) | |
Conscientiousness | ALL | - | 0.71 (0.10) | 0.38 (0.21) | 0.83 (0.12) | 0.54 (0.27) | |
Sensation seeking | Thrill and adventure seeking | ALL | * | 0.73 (0.13) | 0.40 (0.27) | 0.94 (0.13) | 0.43 (0.19) |
Experience seeking | ALL | * | 0.73 (0.19) | 0.46 (0.39) | 0.78 (0.17) | 0.68 (0.28) | |
Disinhibition | ALL | * | 0.72 (0.15) | 0.43 (0.31) | 0.58 (0.32) | 0.86 (0.13) | |
Boredom susceptibility | VR | *** | 0.73 (0.08) | 0.31 (0.24) | 0.30 (0.25) | 0.98 (0.05) | |
Sensation seeking (overall score) | ALL | - | 0.67 (0.14) | 0.35 (0.28) | 0.69 (0.17) | 0.67 (0.26) | |
Impulsivity | Negative urgency | VR | *** | 0.78 (0.14) | 0.55 (0.28) | 0.70 (0.19) | 0.86 (0.16) |
Lack of premeditation | ALL | ** | 0.75 (0.10) | 0.50 (0.20) | 0.72 (0.25) | 0.79 (0.21) | |
Lack of perseverance | VR | - | 0.67 (0.17) | 0.33 (0.32) | 0.68 (0.29) | 0.65 (0.23) | |
Sensation seeking | ALL | - | 0.68 (0.21) | 0.36 (0.42) | 0.68 (0.26) | 0.67 (0.25) | |
Positive urgency | VR | ** | 0.71 (0.16) | 0.34 (0.37) | 0.92 (0.10) | 0.41 (0.31) |
Dim. | Subscale (n Features) | Risk Zone | No Risk Zone | ||||
---|---|---|---|---|---|---|---|
VR | ET | GSR | VR | ET | GSR | ||
Pers. | Neuroticism (6) | Time spent | Visits to keys Visits to green spheres | - | Total interactions | Fixation duration Visits to purple spheres | - |
Extraversion (4) | Green spheres caught | Distance in saccades | - | - | Fixation duration Velocity of saccades | - | |
Openness (5) | - | Number of objects seen Angular saccade distance | - | - | Distance in saccades | - | |
Sens. Seek. | Thrill and adventure seeking (5) | Time spent Green spheres caught Visits to each risk Distance covered | - | - | Pause button use | - | - |
Experience seeking (9) | Acceleration | Fixation duration Visits to keys | - | Time spent Purple spheres caught Total interactions | Fixation duration | Number of phasic peaks Phasic value | |
Disinhibition (11) | Velocity Distance covered | Distance in saccades | Skewness of phasic signal | Purple spheres caught Velocity | Number of fixations Velocity in saccades | Number of phasic peaks Phasic value Skewness of phasic signal | |
Boredom susceptibility (11) | Shield use Total interactions | Fixation duration Distance in saccades | - | - | Angular saccade distance Velocity and distance in saccades | Kurtosis of phasic signal Phasic value | |
Imp. | Negative urgency (4) | Time spent Pause button use | - | - | Total interactions | - | - |
Lack of prem. (5) | Velocity | Velocity of saccades | - | Purple spheres caught | Visits to green spheres | Phasic value | |
Positive urgency (10) | Time spent Visits to each risk Shield use | - | - | Time spent Distance covered Pause button use Shield use | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de-Juan-Ripoll, C.; Llanes-Jurado, J.; Giglioli, I.A.C.; Marín-Morales, J.; Alcañiz, M. An Immersive Virtual Reality Game for Predicting Risk Taking through the Use of Implicit Measures. Appl. Sci. 2021, 11, 825. https://doi.org/10.3390/app11020825
de-Juan-Ripoll C, Llanes-Jurado J, Giglioli IAC, Marín-Morales J, Alcañiz M. An Immersive Virtual Reality Game for Predicting Risk Taking through the Use of Implicit Measures. Applied Sciences. 2021; 11(2):825. https://doi.org/10.3390/app11020825
Chicago/Turabian Stylede-Juan-Ripoll, Carla, José Llanes-Jurado, Irene Alice Chicchi Giglioli, Javier Marín-Morales, and Mariano Alcañiz. 2021. "An Immersive Virtual Reality Game for Predicting Risk Taking through the Use of Implicit Measures" Applied Sciences 11, no. 2: 825. https://doi.org/10.3390/app11020825
APA Stylede-Juan-Ripoll, C., Llanes-Jurado, J., Giglioli, I. A. C., Marín-Morales, J., & Alcañiz, M. (2021). An Immersive Virtual Reality Game for Predicting Risk Taking through the Use of Implicit Measures. Applied Sciences, 11(2), 825. https://doi.org/10.3390/app11020825