Next Article in Journal
Evaluation of a Passive Upper-Limb Exoskeleton Applied to Assist Farming Activities in Fruit Orchards
Next Article in Special Issue
GNSS Profile from the Greenland Korth Expeditions in the Context of Satellite Data
Previous Article in Journal
Distribution Trends of Cadmium and Lead in Timberline Coniferous Forests in the Eastern Tibetan Plateau
Previous Article in Special Issue
Georeferencing of Multi-Sheet Maps Based on Least Squares with Constraints—First Military Mapping Survey Maps in the Area of Czechia
Article

Knud Rasmussen Glacier Status Analysis Based on Historical Data and Moving Detection Using RPAS

Faculty of Civil Engineering, Czech Technical University in Prague, Thakurova 7, 16629 Prague, Czech Republic
*
Author to whom correspondence should be addressed.
Appl. Sci. 2021, 11(2), 754; https://doi.org/10.3390/app11020754
Received: 30 November 2020 / Revised: 31 December 2020 / Accepted: 12 January 2021 / Published: 14 January 2021
(This article belongs to the Special Issue Analyses in Geomatics: Processing Spatial Data on History and Today)
This article discusses partial results of an international scientific expedition to Greenland that researched the geography, geodesy, botany, and glaciology of the area. The results here focus on the photogrammetrical results obtained with the eBee drone in the eastern part of Greenland at the front of the Knud Rasmussen Glacier and the use of archive image data for monitoring the condition of this glacier. In these short-term visits to the site, the possibility of using a drone is discussed and the results show not only the flow speed of the glacier but also the shape and structure from a height of up to 200 m. From two overflights near the glacier front at different times, it was possible to obtain the speed of the glacier flow and the distribution of velocities in the glacier stream. The technology uses a comparison of two point clouds derived from a set of aerial photos taken with the eBee drone, and calculating the M3C2 (Multiscale Model-to-Model Cloud Comparison) distances with CloudCompare software. The results correlate with other measurement methods like accurate and long-term measurement with Global Navigation Satellite System (GNSS), satellite radar, or ground geodetical technology. The resulting speed from the drone data reached in the middle part of the glacier, was approximately 12–15m per day. The second part of the paper focuses on the analysis of modern satellite images of the Knud Rasmussen Glacier from Google Earth (Landsat series 1984–2016) and Sentinel 2a, and a comparison with historical aerial images from 1932 to 1933. Historical images were processed photogrammetrically into a three-dimensional (3D) model. Finally, orthogonalized image data from three systems (drone photos, historical aerial photos, and satellite data) were compared in the ArcGIS software. This allows us to analyze glacier changes over time in the time span from 1932 to 2020, with the caveat that from 1933 to 1983 we did not have data at our disposal. The result shows that more significant changes in the area of this glacier occurred after 2011. The main aim of this article is to research the use of photogrammetric methods for monitoring the condition and parameters of glaciers based on non-traditional technology, such as drones or new processing of historical photos. View Full-Text
Keywords: photogrammetry; RPAS; CloudCompare; Bee; Greenland; Knud Rasmussen Glacier photogrammetry; RPAS; CloudCompare; Bee; Greenland; Knud Rasmussen Glacier
Show Figures

Figure 1

MDPI and ACS Style

Pavelka, K.; Šedina, J.; Pavelka, K., Jr. Knud Rasmussen Glacier Status Analysis Based on Historical Data and Moving Detection Using RPAS. Appl. Sci. 2021, 11, 754. https://doi.org/10.3390/app11020754

AMA Style

Pavelka K, Šedina J, Pavelka K Jr.. Knud Rasmussen Glacier Status Analysis Based on Historical Data and Moving Detection Using RPAS. Applied Sciences. 2021; 11(2):754. https://doi.org/10.3390/app11020754

Chicago/Turabian Style

Pavelka, Karel, Jaroslav Šedina, and Karel Pavelka Jr. 2021. "Knud Rasmussen Glacier Status Analysis Based on Historical Data and Moving Detection Using RPAS" Applied Sciences 11, no. 2: 754. https://doi.org/10.3390/app11020754

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop