Review on the Integration of Phase Change Materials in Building Envelopes for Passive Latent Heat Storage
Abstract
:Featured Application
Abstract
1. Introduction
- the correction of the phase shift between demand and off-peak periods during which prices are more favorable,
- the time shift between production and consumption which allows the reduction of the dependence on fossil fuels by using renewable energies and the limitation of heat losses through storage.
2. Thermal Energy Storage Systems in Buildings
2.1. Materials for Passive Thermal Energy Storage
2.2. Passive Storage Systems Incorporating PCMs
2.2.1. Building Envelopes
2.2.2. Conventional Building Envelopes
2.2.3. Building Envelopes Integrating PCMs
2.2.4. Trombe Walls
2.2.5. Incorporation of PCMs into Building Envelopes
2.2.6. Direct Incorporation
2.2.7. Impregnation
2.2.8. Encapsulation
2.2.9. Shape-Stabilized
3. Studies of PCMs Incorporated in Passive Systems
3.1. Experimental Studies
3.1.1. At the Composite Scale
3.1.2. At the System Scale (Envelopes and Buildings)
3.1.3. Dynamic Numerical Simulations of Buildings Incorporating PCMs
- the addition of micro-encapsulated PCM and/or the increase of the PCM melting enthalpy reduced and delayed the thermal load of the building,
- the melting temperature of the PCM should be close to the indoor temperature regardless of the climatic conditions,
- the phase-change temperature range had limited effect on energy flux reduction and time shift.
3.1.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. Global Warming of 1.5 °C—Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Buildings—Topics—International Energy Agency (IEA). Available online: https://www.iea.org/topics/buildings (accessed on 30 April 2021).
- Asan, H.; Sancaktar, Y.S. Effects of Wall’s Thermophysical Properties on Time Lag and Decrement Factor. Energy Build. 1998, 28, 159–166. [Google Scholar] [CrossRef]
- Zhuang, Z.; Li, Y.; Chen, B.; Guo, J. Chinese Kang as a Domestic Heating System in Rural Northern China—A Review. Energy Build. 2009, 41, 111–119. [Google Scholar] [CrossRef]
- Saadatian, O.; Sopian, K.; Lim, C.H.; Asim, N.; Sulaiman, M.Y. Trombe Walls: A Review of Opportunities and Challenges in Research and Development. Renew. Sustain. Energy Rev. 2012, 16, 6340–6351. [Google Scholar] [CrossRef]
- Ståhl, F. Influence of Thermal Mass on the Heating and Cooling Demands of a Building Unit; Chalmers Tekniska: Hogskola, Sweden, 2009. [Google Scholar]
- Delgado, J.M.P.Q.; Martinho, J.C.; Vaz Sá, A.; Guimarães, A.S.; Abrantes, V. Thermal Energy Storage with Phase Change Materials: A Literature Review of Applications for Buildings Materials; SpringerBriefs in Applied Sciences and Technology; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-319-97498-9. [Google Scholar]
- Ben Romdhane, S.; Amamou, A.; Ben Khalifa, R.; Saïd, N.M.; Younsi, Z.; Jemni, A. A Review on Thermal Energy Storage Using Phase Change Materials in Passive Building Applications. J. Build. Eng. 2020, 32, 101563. [Google Scholar] [CrossRef]
- Akeiber, H.; Nejat, P.; Majid, M.Z.A.; Wahid, M.A.; Jomehzadeh, F.; Famileh, I.Z.; Calautit, J.K.; Hughes, B.R.; Zaki, S.A. A Review on Phase Change Material (PCM) for Sustainable Passive Cooling in Building Envelopes. Renew. Sustain. Energy Rev. 2016, 60, 1470–1497. [Google Scholar] [CrossRef]
- Al-Yasiri, Q.; Szabó, M. Incorporation of Phase Change Materials into Building Envelope for Thermal Comfort and Energy Saving: A Comprehensive Analysis. J. Build. Eng. 2021, 36, 102122. [Google Scholar] [CrossRef]
- Basecq, V.; Michaux, G.; Blondeau, P.; Inard, C. Short Term Storage Systems of the Thermal Energy for Buildings: A Review. Adv. Build. Energy Res. 2013, 7, 66–119. [Google Scholar] [CrossRef]
- Thermal Energy Storage: Technology Brief. Available online: /publications/2013/Jan/Thermal-energy-storage (accessed on 3 May 2021).
- Navarro, L.; de Gracia, A.; Colclough, S.; Browne, M.; McCormack, S.J.; Griffiths, P.; Cabeza, L.F. Thermal Energy Storage in Building Integrated Thermal Systems: A Review. Part 1. Active Storage Systems. Renew. Energy 2016, 88, 526–547. [Google Scholar] [CrossRef] [Green Version]
- Abhat, A. Low Temperature Latent Heat Thermal Energy Storage: Heat Storage Materials. Sol. Energy 1983, 30, 313–332. [Google Scholar] [CrossRef]
- Desai, F.; Sunku Prasad, J.; Muthukumar, P.; Rahman, M.M. Thermochemical Energy Storage System for Cooling and Process Heating Applications: A Review. Energy Convers. Manag. 2021, 229, 113617. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; Barreneche, C.; de Gracia, A.; Fernández, A.I. Materials Used as PCM in Thermal Energy Storage in Buildings: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1675–1695. [Google Scholar] [CrossRef]
- Lamrani, B.; Johannes, K.; Kuznik, F. Phase Change Materials Integrated into Building Walls: An Updated Review. Renew. Sustain. Energy Rev. 2021, 140, 110751. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Phase Change Materials for Building Applications: A State-of-the-Art Review. Energy Build. 2010, 42, 1361–1368. [Google Scholar] [CrossRef] [Green Version]
- Cunha, S.; Leite, P.; Aguiar, J. Characterization of Innovative Mortars with Direct Incorporation of Phase Change Materials. J. Energy Storage 2020, 30, 101439. [Google Scholar] [CrossRef]
- Soares, N.; Costa, J.J.; Gaspar, A.R.; Santos, P. Review of Passive PCM Latent Heat Thermal Energy Storage Systems towards Buildings’ Energy Efficiency. Energy Build. 2013, 59, 82–103. [Google Scholar] [CrossRef]
- Kumar, D.; Alam, M.; Zou, P.X.W.; Sanjayan, J.G.; Memon, R.A. Comparative Analysis of Building Insulation Material Properties and Performance. Renew. Sustain. Energy Rev. 2020, 131, 110038. [Google Scholar] [CrossRef]
- Abu-Jdayil, B.; Mourad, A.-H.; Hittini, W.; Hassan, M.; Hameedi, S. Traditional, State-of-the-Art and Renewable Thermal Building Insulation Materials: An Overview. Constr. Build. Mater. 2019, 214, 709–735. [Google Scholar] [CrossRef]
- Asim, M.; Uddin, G.M.; Jamshaid, H.; Raza, A.; Hussain, U.; Satti, A.N.; Hayat, N.; Arafat, S.M. Comparative Experimental Investigation of Natural Fibers Reinforced Light Weight Concrete as Thermally Efficient Building Materials. J. Build. Eng. 2020, 31, 101411. [Google Scholar] [CrossRef]
- Jami, T.; Karade, S.R.; Singh, L.P. A Review of the Properties of Hemp Concrete for Green Building Applications. J. Clean. Prod. 2019, 239, 117852. [Google Scholar] [CrossRef]
- Jeong, S.-G.; Wi, S.; Chang, S.J.; Lee, J.; Kim, S. An Experimental Study on Applying Organic PCMs to Gypsum-Cement Board for Improving Thermal Performance of Buildings in Different Climates. Energy Build. 2019, 190, 183–194. [Google Scholar] [CrossRef]
- Errebai, F.B.; Chikh, S.; Derradji, L.; Amara, M.; Younsi, Z. Optimum Mass Percentage of Microencapsulated PCM Mixed with Gypsum for Improved Latent Heat Storage. J. Energy Storage 2021, 33, 101910. [Google Scholar] [CrossRef]
- Paranjothi, G.; Odukomaiya, A.; Cui, S.; Bulk, A. Evaluation of Phase Change Plaster/Paste Composites for Building Envelopes. Energy Build. 2021, 253, 111372. [Google Scholar] [CrossRef]
- Tyagi, V.V.; Buddhi, D. PCM Thermal Storage in Buildings: A State of Art. Renew. Sustain. Energy Rev. 2007, 11, 1146–1166. [Google Scholar] [CrossRef]
- Silva, T.; Vicente, R.; Rodrigues, F.; Samagaio, A.; Cardoso, C. Performance of a Window Shutter with Phase Change Material under Summer Mediterranean Climate Conditions. Appl. Therm. Eng. 2015, 84, 246–256. [Google Scholar] [CrossRef]
- Gao, Y.; Zheng, Q.; Jonsson, J.C.; Lubner, S.; Curcija, C.; Fernandes, L.; Kaur, S.; Kohler, C. Parametric Study of Solid-Solid Translucent Phase Change Materials in Building Windows. Appl. Energy 2021, 301, 117467. [Google Scholar] [CrossRef]
- Alawadhi, E.M. Using Phase Change Materials in Window Shutter to Reduce the Solar Heat Gain. Energy Build. 2012, 47, 421–429. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, S.; Zeng, C.; Zhang, Y.; Li, Y.; Han, X.; Yang, L.; Yang, X. Experimental Thermal Study of a New PCM-Concrete Thermal Storage Block (PCM-CTSB). Constr. Build. Mater. 2021, 293, 123540. [Google Scholar] [CrossRef]
- Dehmous, M.; Franquet, E.; Lamrous, N. Mechanical and Thermal Characterizations of Various Thermal Energy Storage Concretes Including Low-Cost Bio-Sourced PCM. Energy Build. 2021, 241, 110878. [Google Scholar] [CrossRef]
- Jia, C.; Geng, X.; Liu, F.; Gao, Y. Thermal Behavior Improvement of Hollow Sintered Bricks Integrated with Both Thermal Insulation Material (TIM) and Phase-Change Material (PCM). Case Stud. Therm. Eng. 2021, 25, 100938. [Google Scholar] [CrossRef]
- Hamidi, Y.; Aketouane, Z.; Malha, M.; Bruneau, D.; Bah, A.; Goiffon, R. Integrating PCM into Hollow Brick Walls: Toward Energy Conservation in Mediterranean Regions. Energy Build. 2021, 248, 111214. [Google Scholar] [CrossRef]
- Li, M.; Cao, Q.; Pan, H.; Wang, X.; Lin, Z. Effect of Melting Point on Thermodynamics of Thin PCM Reinforced Residential Frame Walls in Different Climate Zones. Appl. Therm. Eng. 2021, 188, 116615. [Google Scholar] [CrossRef]
- Navarro, L.; de Gracia, A.; Niall, D.; Castell, A.; Browne, M.; McCormack, S.J.; Griffiths, P.; Cabeza, L.F. Thermal Energy Storage in Building Integrated Thermal Systems: A Review. Part 2. Integration as Passive System. Renew. Energy 2016, 85, 1334–1356. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, P.; Benevento, F.; Bruno, R.; Arcuri, N. Are Trombe Walls Suitable Passive Systems for the Reduction of the Yearly Building Energy Requirements? Energy 2019, 185, 554–566. [Google Scholar] [CrossRef]
- Duan, S.; Wang, L.; Zhao, Z.; Zhang, C. Experimental Study on Thermal Performance of an Integrated PCM Trombe Wall. Renew. Energy 2021, 163, 1932–1941. [Google Scholar] [CrossRef]
- Oluah, C.; Akinlabi, E.T.; Njoku, H.O. Selection of Phase Change Material for Improved Performance of Trombe Wall Systems Using the Entropy Weight and TOPSIS Methodology. Energy Build. 2020, 217, 109967. [Google Scholar] [CrossRef]
- Li, S.; Zhu, N.; Hu, P.; Lei, F.; Deng, R. Numerical Study on Thermal Performance of PCM Trombe Wall. Energy Procedia 2019, 158, 2441–2447. [Google Scholar] [CrossRef]
- Sergei, K.; Shen, C.; Jiang, Y. A Review of the Current Work Potential of a Trombe Wall. Renew. Sustain. Energy Rev. 2020, 130, 109947. [Google Scholar] [CrossRef]
- Al-Saadi, S.N.; Zhai, Z. A New Validated TRNSYS Module for Simulating Latent Heat Storage Walls. Energy Build. 2015, 109, 274–290. [Google Scholar] [CrossRef] [Green Version]
- Guarino, F.; Athienitis, A.; Cellura, M.; Bastien, D. PCM Thermal Storage Design in Buildings: Experimental Studies and Applications to Solaria in Cold Climates. Appl. Energy 2017, 185, 95–106. [Google Scholar] [CrossRef]
- Memon, S.A. Phase Change Materials Integrated in Building Walls: A State of the Art Review. Renew. Sustain. Energy Rev. 2014, 31, 870–906. [Google Scholar] [CrossRef]
- Umair, M.M.; Zhang, Y.; Iqbal, K.; Zhang, S.; Tang, B. Novel Strategies and Supporting Materials Applied to Shape-Stabilize Organic Phase Change Materials for Thermal Energy Storage–A Review. Appl. Energy 2019, 235, 846–873. [Google Scholar] [CrossRef]
- Sivanathan, A.; Dou, Q.; Wang, Y.; Li, Y.; Corker, J.; Zhou, Y.; Fan, M. Phase Change Materials for Building Construction: An Overview of Nano-/Micro-Encapsulation. Nanotechnol. Rev. 2020, 9, 896–921. [Google Scholar] [CrossRef]
- Alehosseini, E.; Jafari, S.M. Micro/Nano-Encapsulated Phase Change Materials (PCMs) as Emerging Materials for the Food Industry. Trends Food Sci. Technol. 2019, 91, 116–128. [Google Scholar] [CrossRef]
- Gao, H.; Wang, J.; Chen, X.; Wang, G.; Huang, X.; Li, A.; Dong, W. Nanoconfinement Effects on Thermal Properties of Nanoporous Shape-Stabilized Composite PCMs: A Review. Nano Energy 2018, 53, 769–797. [Google Scholar] [CrossRef]
- Jeong, S.-G.; Jeon, J.; Lee, J.-H.; Kim, S. Optimal Preparation of PCM/Diatomite Composites for Enhancing Thermal Properties. Int. J. Heat Mass Transf. 2013, 62, 711–717. [Google Scholar] [CrossRef]
- Kulkarni, P.; Muthadhi, A. Thermal Energy Storage Cement Mortar with Direct Incorporation of Organic and Inorganic Phase Change Materials. Innov. Infrastruct. Solut. 2021, 6, 30. [Google Scholar] [CrossRef]
- Boussaba, L.; Lefebvre, G.; Makhlouf, S.; Grados, A.; Royon, L. Investigation and Properties of a Novel Composite Bio-PCM to Reduce Summer Energy Consumptions in Buildings of Hot and Dry Climates. Sol. Energy 2021, 214, 119–130. [Google Scholar] [CrossRef]
- JO RAPD, DTR BC 2.41: Design and Calculation Rules for Reinforced Concrete Structures Reinforced Concrete Structures—C.B.A. 93—Regulatory Technical Document, Ministry of and Urbanism of the People’s Democratic Republic of Algeria People (2013). Available online: https://pdfcoffee.com/cba-93-pdf-free.html (accessed on 20 August 2021).
- Bake, M.; Shukla, A.; Liu, S. Development of Gypsum Plasterboard Embodied with Microencapsulated Phase Change Material for Energy Efficient Buildings. Mater. Sci. Energy Technol. 2021, 4, 166–176. [Google Scholar] [CrossRef]
- Standard E.N. 13279-2, Gypsum Binders and Gypsum Plasters. Part 2: Test methods. 2004.
- Li, C.; Yu, H.; Song, Y. Experimental Investigation of Thermal Performance of Microencapsulated PCM-Contained Wallboard by Two Measurement Modes. Energy Build. 2019, 184, 34–43. [Google Scholar] [CrossRef]
- Elfordy, S.; Lucas, F.; Tancret, F.; Scudeller, Y.; Goudet, L. Mechanical and Thermal Properties of Lime and Hemp Concrete (“Hempcrete”) Manufactured by a Projection Process. Constr. Build. Mater. 2008, 22, 2116–2123. [Google Scholar] [CrossRef]
- Kymäläinen, H.-R.; Sjöberg, A.-M. Flax and Hemp Fibres as Raw Materials for Thermal Insulations. Build. Environ. 2008, 43, 1261–1269. [Google Scholar] [CrossRef]
- Murphy, D.P.; Behring, H.; Wieland, H. The Use of Flax and Hemp Materials for Insulating Buildings. Proc. Flax Other Bast Plants Symp. 1997, 30, 79–84. [Google Scholar]
- Kirilovs, E.; Zotova, I.; Gendelis, S.; Jörg-Gusovius, H.; Kukle, S.; Stramkale, V. Experimental Study of Using Micro-Encapsulated Phase-Change Material Integrated into Hemp Shive Wallboard. Buildings 2020, 10, 228. [Google Scholar] [CrossRef]
- Zhu, N.; Li, S.; Hu, P.; Wei, S.; Deng, R.; Lei, F. A Review on Applications of Shape-Stabilized Phase Change Materials Embedded in Building Enclosure in Recent Ten Years. Sustain. Cities Soc. 2018, 43, 251–264. [Google Scholar] [CrossRef]
- Karaipekli, A.; Sari, A. Preparation, Thermal Properties and Thermal Reliability of Eutectic Mixtures of Fatty Acids/Expanded Vermiculite as Novel Form-Stable Composites for Energy Storage. J. Ind. Eng. Chem. 2010, 16, 767–773. [Google Scholar] [CrossRef]
- Wang, H.; Deng, Y.; Wu, F.; Dai, X.; Wang, W.; Mai, Y.; Gu, Y.; Liu, Y. Effect of Dopamine-Modified Expanded Vermiculite on Phase Change Behavior and Heat Storage Characteristic of Polyethylene Glycol. Chem. Eng. J. 2021, 415, 128992. [Google Scholar] [CrossRef]
- Rathore, P.K.S.; Shukla, S.K. Improvement in Thermal Properties of PCM/Expanded Vermiculite/Expanded Graphite Shape Stabilized Composite PCM for Building Energy Applications. Renew. Energy 2021, 176, 295–304. [Google Scholar] [CrossRef]
- Chen, Y.; Cui, Z.; Ding, H.; Wan, Y.; Tang, Z.; Gao, J. Cost-Effective Biochar Produced from Agricultural Residues and Its Application for Preparation of High Performance Form-Stable Phase Change Material via Simple Method. Int. J. Mol. Sci. 2018, 19, 3055. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.; Park, J.H.; Wi, S.; Yang, S.; Ok, Y.S.; Kim, S. Characterization of Biocomposite Using Coconut Oil Impregnated Biochar as Latent Heat Storage Insulation. Chemosphere 2019, 236, 124269. [Google Scholar] [CrossRef]
- Wan, Y.-C.; Chen, Y.; Cui, Z.-X.; Ding, H.; Gao, S.-F.; Han, Z.; Gao, J.-K. A Promising Form-Stable Phase Change Material Prepared Using Cost Effective Pinecone Biochar as the Matrix of Palmitic Acid for Thermal Energy Storage. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, X.; Zhang, X.; Yin, Z.; Liu, Y.; Fang, M.; Wu, X.; Min, X.; Huang, Z. Lauric-Stearic Acid Eutectic Mixture/Carbonized Biomass Waste Corn Cob Composite Phase Change Materials: Preparation and Thermal Characterization. Thermochim. Acta 2019, 674, 21–27. [Google Scholar] [CrossRef]
- Liu, L.; Li, J.; Deng, Y.; Yang, Z.; Huang, K.; Zhao, S. Optimal Design of Multi-Layer Structure Composite Containing Inorganic Hydrated Salt Phase Change Materials and Cement: Lab-Scale Tests for Buildings. Constr. Build. Mater. 2021, 275, 122125. [Google Scholar] [CrossRef]
- Rathore, P.K.S.; Shukla, S.K. Enhanced Thermophysical Properties of Organic PCM through Shape Stabilization for Thermal Energy Storage in Buildings: A State of the Art Review. Energy Build. 2021, 236, 110799. [Google Scholar] [CrossRef]
- Xu, B.; Li, Z. Paraffin/Diatomite Composite Phase Change Material Incorporated Cement-Based Composite for Thermal Energy Storage. Appl. Energy 2013, 105, 229–237. [Google Scholar] [CrossRef]
- Karaman, S.; Karaipekli, A.; Sar, A.; Biçer, A. Polyethylene Glycol (PEG)/Diatomite Composite as a Novel Form-Stable Phase Change Material for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2011, 95, 1647–1653. [Google Scholar] [CrossRef]
- Wen, R.; Zhang, X.; Huang, Z.; Fang, M.; Liu, Y.; Wu, X.; Min, X.; Gao, W.; Huang, S. Preparation and Thermal Properties of Fatty Acid/Diatomite Form-Stable Composite Phase Change Material for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2018, 178, 273–279. [Google Scholar] [CrossRef]
- Ali Memon, S.; Yiu Lo, T.; Shi, X.; Barbhuiya, S.; Cui, H. Preparation, Characterization and Thermal Properties of Lauryl Alcohol/Kaolin as Novel Form-Stable Composite Phase Change Material for Thermal Energy Storage in Buildings. Appl. Therm. Eng. 2013, 59, 336–347. [Google Scholar] [CrossRef]
- Sari, A. Fabrication and Thermal Characterization of Kaolin-Based Composite Phase Change Materials for Latent Heat Storage in Buildings. Energy Build. 2015, 96, 193–200. [Google Scholar] [CrossRef]
- Jafaripour, M.; Sadrameli, S.M.; Pahlavanzadeh, H.; Mousavi, S.A.H.S. Fabrication and Optimization of Kaolin/Stearic Acid Composite as a Form-Stable Phase Change Material for Application in the Thermal Energy Storage Systems. J. Energy Storage 2021, 33, 102155. [Google Scholar] [CrossRef]
- Chung, O.; Jeong, S.-G.; Kim, S. Preparation of Energy Efficient Paraffinic PCMs/Expanded Vermiculite and Perlite Composites for Energy Saving in Buildings. Sol. Energy Mater. Sol. Cells 2015, 137, 107–112. [Google Scholar] [CrossRef]
- Wen, R.; Huang, Z.; Huang, Y.; Zhang, X.; Min, X.; Fang, M.; Liu, Y.; Wu, X. Synthesis and Characterization of Lauric Acid/Expanded Vermiculite as Form-Stabilized Thermal Energy Storage Materials. Energy Build. 2016, 116, 677–683. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.; Huang, Z.; Yin, Z.; Wen, R.; Huang, Y.; Wu, X.; Min, X. Preparation and Characterization of Capric-Palmitic-Stearic Acid Ternary Eutectic Mixture/Expanded Vermiculite Composites as Form-Stabilized Thermal Energy Storage Materials. J. Mater. Sci. Technol. 2018, 34, 379–386. [Google Scholar] [CrossRef]
- Atinafu, D.G.; Yun, B.Y.; Wi, S.; Kang, Y.; Kim, S. A Comparative Analysis of Biochar, Activated Carbon, Expanded Graphite, and Multi-Walled Carbon Nanotubes with Respect to PCM Loading and Energy-Storage Capacities. Environ. Res. 2021, 195, 110853. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, Y.; Zhang, N.; Cao, X.; Yang, X. A Novel PCM of Lauric–Myristic–Stearic Acid/Expanded Graphite Composite for Thermal Energy Storage. Mater. Lett. 2014, 120, 43–46. [Google Scholar] [CrossRef]
- Yang, Y.; Pang, Y.; Liu, Y.; Guo, H. Preparation and Thermal Properties of Polyethylene Glycol/Expanded Graphite as Novel Form-Stable Phase Change Material for Indoor Energy Saving. Mater. Lett. 2018, 216, 220–223. [Google Scholar] [CrossRef]
- Yu, H.; Gao, J.; Chen, Y.; Zhao, Y. Preparation and Properties of Stearic Acid/Expanded Graphite Composite Phase Change Material for Low-Temperature Solar Thermal Application. J. Therm. Anal. Calorim. 2016, 124, 87–92. [Google Scholar] [CrossRef]
- Das, D.; Bordoloi, U.; Muigai, H.H.; Kalita, P. A Novel Form Stable PCM Based Bio Composite Material for Solar Thermal Energy Storage Applications. J. Energy Storage 2020, 30, 101403. [Google Scholar] [CrossRef]
- Hekimoğlu, G.; Sarı, A.; Kar, T.; Keleş, S.; Kaygusuz, K.; Tyagi, V.V.; Sharma, R.K.; Al-Ahmed, A.; Al-Sulaiman, F.A.; Saleh, T.A. Walnut Shell Derived Bio-Carbon/Methyl Palmitate as Novel Composite Phase Change Material with Enhanced Thermal Energy Storage Properties. J. Energy Storage 2021, 35, 102288. [Google Scholar] [CrossRef]
- Ma, L.; Guo, C.; Ou, R.; Sun, L.; Wang, Q.; Li, L. Preparation and Characterization of Modified Porous Wood Flour/Lauric-Myristic Acid Eutectic Mixture as a Form-Stable Phase Change Material. Energy Fuels 2018, 32, 5453–5461. [Google Scholar] [CrossRef]
- Barreneche, C.; Vecstaudza, J.; Bajare, D.; Fernandez, A.I. PCM/Wood Composite to Store Thermal Energy in Passive Building Envelopes; IOP Publishing: Bristol, UK, 2017; Volume 251. [Google Scholar]
- Jingchen, X.; Keyan, Y.; Yucheng, Z.; Yuxiang, Y.; Jianmin, C.; Liping, C.; Sheldon, S.Q. Form-Stable Phase Change Material Based on Fatty Acid/Wood Flour Composite and PVC Used for Thermal Energy Storage. Energy Build. 2020, 209, 109663. [Google Scholar] [CrossRef]
- Sarı, A.; Hekimoğlu, G.; Tyagi, V.V. Low Cost and Eco-Friendly Wood Fiber-Based Composite Phase Change Material: Development, Characterization and Lab-Scale Thermoregulation Performance for Thermal Energy Storage. Energy 2020, 195, 116983. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Q.; Li, L. Delignified Wood/Capric Acid-Palmitic Acid Mixture Stable-Form Phase Change Material for Thermal Storage. Sol. Energy Mater. Sol. Cells 2019, 194, 215–221. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Yu, Q.; Cao, G.; Yang, R.; Ke, J.; Di, X.; Liu, F.; Zhang, W.; Wang, C. Composite Phase Change Materials with Good Reversible Thermochromic Ability in Delignified Wood Substrate for Thermal Energy Storage. Appl. Energy 2018, 212, 455–464. [Google Scholar] [CrossRef]
- Xu, J.; Yang, T.; Xu, X.; Guo, X.; Cao, J. Processing Solid Wood into a Composite Phase Change Material for Thermal Energy Storage by Introducing Silica-Stabilized Polyethylene Glycol. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106098. [Google Scholar] [CrossRef]
- Liu, S.; Wu, H.; Du, Y.; Lu, X.; Qu, J. Shape-Stable Composite Phase Change Materials Encapsulated by Bio-Based Balsa Wood for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2021, 230, 111187. [Google Scholar] [CrossRef]
- Yang, H.; Wang, S.; Wang, X.; Chao, W.; Wang, N.; Ding, X.; Liu, F.; Yu, Q.; Yang, T.; Yang, Z.; et al. Wood-Based Composite Phase Change Materials with Self-Cleaning Superhydrophobic Surface for Thermal Energy Storage. Appl. Energy 2020, 261, 114481. [Google Scholar] [CrossRef]
- Sheng, N.; Rao, Z.; Zhu, C.; Habazaki, H. Honeycomb Carbon Fibers Strengthened Composite Phase Change Materials for Superior Thermal Energy Storage. Appl. Therm. Eng. 2020, 164, 114493. [Google Scholar] [CrossRef]
- Damfeu, J.C.; Meukam, P.; Jannot, Y. Modeling and Measuring of the Thermal Properties of Insulating Vegetable Fibers by the Asymmetrical Hot Plate Method and the Radial Flux Method: Kapok, Coconut, Groundnut Shell Fiber and Rattan. Thermochim. Acta 2016, 630, 64–77. [Google Scholar] [CrossRef]
- Vaitkus, S.; Karpavičiūtė, R.; Vėjelis, S.; Lekūnaitė, L. Development and Research of Thermal Insulation Materials from Natural Fibres. Key Eng. Mater. 2014, 604, 285–288. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Zheng, F.; Li, H.G.; Lu, C.L. An Environment-Friendly Thermal Insulation Material from Cotton Stalk Fibers. Energy Build. 2010, 42, 1070–1074. [Google Scholar] [CrossRef]
- Tran-Le, A.D.; Nguyen, S.-T.; Langlet, T. A Novel Anisotropic Analytical Model for Effective Thermal Conductivity Tensor of Dry Lime-Hemp Concrete with Preferred Spatial Distributions. Energy Build. 2019, 182, 75–87. [Google Scholar] [CrossRef]
- Voumbo, M.L.; Wereme, A.; Gaye, S.; Adj, M.; Sissoko, G. Characterization of the Thermophysical Properties of Kapok. Res. J. Appl. Sci. Eng. Technol. 2010, 2, 143–148. [Google Scholar]
- Pend, C.; Fumei, W. An investigation of heat flow through kapok insulating material. Fibres Text. 2009, 2, 88–92. [Google Scholar]
- Manohar, K.; Ramlakhan, D.; Kochhar, G.; Haldar, S. Biodegradable Fibrous Thermal Insulation. J. Braz. Soc. Mech. Sci. Eng. 2006, 28, 45–47. [Google Scholar] [CrossRef]
- Duquesne, M.; Mailhé, C.; Ruiz-Onofre, K.; Achchaq, F. Biosourced Organic Materials for Latent Heat Storage: An Economic and Eco-Friendly Alternative. Energy 2019, 188, 116067. [Google Scholar] [CrossRef]
- Duquesne, M.; Mailhé, C.; Doppiu, S.; Dauvergne, J.-L.; Santos-Moreno, S.; Godin, A.; Fleury, G.; Rouault, F.; Palomo del Barrio, E. Characterization of Fatty Acids as Biobased Organic Materials for Latent Heat Storage. Materials 2021, 14, 4707. [Google Scholar] [CrossRef]
- Lee, K.O.; Medina, M.A.; Sun, X.; Jin, X. Thermal Performance of Phase Change Materials (PCM)-Enhanced Cellulose Insulation in Passive Solar Residential Building Walls. Solar Energy 2018, 163, 113–121. [Google Scholar] [CrossRef]
- Erlbeck, L.; Schreiner, P.; Schlachter, K.; Dörnhofer, P.; Fasel, F.; Methner, F.-J.; Rädle, M. Adjustment of Thermal Behavior by Changing the Shape of PCM Inclusions in Concrete Blocks. Energy Convers. Manag. 2018, 158, 256–265. [Google Scholar] [CrossRef]
- Vicente, R.; Silva, T. Brick Masonry Walls with PCM Macrocapsules: An Experimental Approach. Appl. Therm. Eng. 2014, 67, 24–34. [Google Scholar] [CrossRef]
- Al-Yasiri, Q.; Szabó, M. Case Study on the Optimal Thickness of Phase Change Material Incorporated Composite Roof under Hot Climate Conditions. Case Stud. Constr. Mater. 2021, 14, e00522. [Google Scholar] [CrossRef]
- Sun, X.; Medina, M.A.; Lee, K.O.; Jin, X. Laboratory Assessment of Residential Building Walls Containing Pipe-Encapsulated Phase Change Materials for Thermal Management. Energy 2018, 163, 383–391. [Google Scholar] [CrossRef]
- Bontemps, A.; Ahmad, M.; Johannès, K.; Sallée, H. Experimental and Modelling Study of Twin Cells with Latent Heat Storage Walls. Energy Build. 2011, 43, 2456–2461. [Google Scholar] [CrossRef]
- Kondo, T.; Ibamoto, T. Research on Thermal Storage Using Rock Wool Phase-Change Material Ceiling Board. ASHRAE Trans. 2006, 112, 526. [Google Scholar]
- Cabeza, L.F.; Navarro, L.; Pisello, A.L.; Olivieri, L.; Bartolomé, C.; Sánchez, J.; Álvarez, S.; Tenorio, J.A. Behaviour of a Concrete Wall Containing Micro-Encapsulated PCM after a Decade of Its Construction. Sol. Energy 2020, 200, 108–113. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castellón, C.; Nogués, M.; Medrano, M.; Leppers, R.; Zubillaga, O. Use of Microencapsulated PCM in Concrete Walls for Energy Savings. Energy Build. 2007, 39, 113–119. [Google Scholar] [CrossRef]
- Frazzica, A.; Brancato, V.; Palomba, V.; La Rosa, D.; Grungo, F.; Calabrese, L.; Proverbio, E. Thermal Performance of Hybrid Cement Mortar-PCMs for Warm Climates Application. Sol. Energy Mater. Sol. Cells 2019, 193, 270–280. [Google Scholar] [CrossRef]
- ASHRAE Publishes 2017 Version of Thermal Comfort Standard. Available online: https://www.ashrae.org/about/news/2017/ashrae-publishes-2017-version-of-thermal-comfort-standard (accessed on 21 August 2021).
- Zhou, D.; Shire, G.S.F.; Tian, Y. Parametric Analysis of Influencing Factors in Phase Change Material Wallboard (PCMW). Appl. Energy 2014, 119, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Thiele, A.M.; Sant, G.; Pilon, L. Diurnal Thermal Analysis of Microencapsulated PCM-Concrete Composite Walls. Energy Convers. Manag. 2015, 93, 215–227. [Google Scholar] [CrossRef]
- Jia, J.; Liu, B.; Ma, L.; Wang, H.; Li, D.; Wang, Y. Energy Saving Performance Optimization and Regional Adaptability of Prefabricated Buildings with PCM in Different Climates. Case Stud. Therm. Eng. 2021, 26, 101164. [Google Scholar] [CrossRef]
- Al-Absi, Z.A.; Mohd Isa, M.H.; Ismail, M. Phase Change Materials (PCMs) and Their Optimum Position in Building Walls. Sustainability 2020, 12, 1294. [Google Scholar] [CrossRef] [Green Version]
- Wi, S.; Chang, S.J.; Kim, S. Improvement of Thermal Inertia Effect in Buildings Using Shape Stabilized PCM Wallboard Based on the Enthalpy-Temperature Function. Sustain. Cities Soc. 2020, 56, 102067. [Google Scholar] [CrossRef]
Storage Modes | Advantages | Disadvantages |
---|---|---|
Sensible |
|
|
Latent |
|
|
Thermochemical |
|
|
|
| |
|
|
PCM Types | Advantages | Disadvantages |
---|---|---|
Organic |
|
|
Inorganic |
|
|
Eutectic |
|
|
Techniques | Advantages | Disadvantages |
---|---|---|
Direct incorporation |
|
|
|
| |
| ||
Impregnation |
|
|
|
| |
| ||
Micro-encapsulation |
|
|
|
| |
|
| |
|
| |
| ||
Macro-encapsulation |
|
|
|
| |
|
| |
Shape-stabilized |
|
|
|
| |
| ||
| ||
|
Composites | Temperature of Fusion (°C) | Heat of Fusion (J g−1) | References | |
---|---|---|---|---|
Support materials | PCM (wt%) | |||
Diatomite | Paraffin (47.4) | 41.11 | 70.51 | [71] |
PEG (50) | 27.7 | 87.09 | [72] | |
Capric-lauric acid (CA-LA) | 23.61 | 87.33 | [73] | |
Kaolin | Lauric alcohol (24) | 19.14 | 48.08 | [74] |
Capric acid (17.5) | 30.71 | 27.23 | [75] | |
PEG600 (21) | 5.16 | 32.80 | [75] | |
Heptadecane (16.5) | 22.08 | 34.63 | [75] | |
Stearic acid (75) | 60.1 | 149.5 | [76] | |
Expanded Vermiculite | n-octadecane (80) | 26.1 | 142 | [77] |
Lauric acid (70) | 41.88 | 126.8 | [78] | |
CA-PA-SA (70) | 19.3 | 117.6 | [79] | |
CA-LA (40) | 19.09 | 61.03 | [62] | |
CA-PA (40) | 23.51 | 72.05 | ||
CA-SA (40) | 25.64 | 71.53 | ||
Expanded Graphite | Heptadecane (94.5) | 13.8 | 195.9 | [80] |
LA-MA-SA (92.3) | 29.05 | 137.1 | [81] | |
PEG (90) | 18.89 | 98.59 | [82] | |
SA (90) | 52.74 | 169.9 | [83] | |
Biochar | Heptadecane (25.7) | 13.9 | 53,3 | [80] |
Paraffin (60) | 57.67 | 179.4 | [84] | |
LA-SA (77.9) | 35.1 | 148.3 | [68] | |
Methyl palmitate (43-55) | 26–27 | 108–138 | [85] | |
Wood flour | LA-SA (60.3) | 33.1 | 98.2 | [86] |
Paraffin (29.9) | 26.18 | 20.62 | [87] | |
CA-PA (80) | 22.30 | 28.16 | [88] | |
Wood fibers | CA-SA (52) | 23.38 | 92.1 | [89] |
Wood (other forms) | CA-PA (61.2) | 23.4 | 94.4 | [90] |
1-tetradecanol (65) | 36.87 | 119.2 | [91] | |
PEG (45.58) | 25.5 | 46.7 | [92] | |
MA (83.9) | 55.7 | 179.1 | [93] | |
Paraffin (84) | 60.3 | 181.9 | [93] | |
PEG (74.1) | 55.8 | 132.6 | [93] | |
1-tetradecanol (60.04) | 36.24 | 125.6 | [94] | |
Vegetable fibers | Paraffin (87.2–91.3) | 22.1–22.5 | 192.2–201.6 | [95] |
MA-TD (40.5) | 28.5–42.5 | 192 | [96] |
Insulator | Density (kg m−3) | Thermal Conductivity (W m−1 K−1) | Cost (€/kg) | References |
---|---|---|---|---|
Bamboo fibers | 431–538 | 77–88 | – | [21] |
Hemp fibers | 25–100 | 40–49 | 2–5 | [97] |
Flax fibers | 20–100 | 35–45 | 5–25 | [97] |
Cotton stalk fibers | 150–450 | 58–82 | – | [98] |
Chènevotte | 100–140 | 80–122 | 0.8–1 | [99] |
Kapok | 17.24 | 30–48.6 | – | [96,100,101] |
Fibres de coco | 40–90 | 501.09–57.58 | 63 | [102] |
PCM | Temperature of Fusion (°C) |
---|---|
CA | 29.87 |
CA (72%)-LA (28%) | 21.14 |
CA (84%)-MA (16%) | 24.24 |
CA (87%)-PA (13%) | 27.95 |
CA (93%)-SA (28%) | 26.91 |
LA (71%)-MA (29%) | 33.07 |
LA (79%)-PA (21%) | 35.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawadogo, M.; Duquesne, M.; Belarbi, R.; Hamami, A.E.A.; Godin, A. Review on the Integration of Phase Change Materials in Building Envelopes for Passive Latent Heat Storage. Appl. Sci. 2021, 11, 9305. https://doi.org/10.3390/app11199305
Sawadogo M, Duquesne M, Belarbi R, Hamami AEA, Godin A. Review on the Integration of Phase Change Materials in Building Envelopes for Passive Latent Heat Storage. Applied Sciences. 2021; 11(19):9305. https://doi.org/10.3390/app11199305
Chicago/Turabian StyleSawadogo, Mohamed, Marie Duquesne, Rafik Belarbi, Ameur El Amine Hamami, and Alexandre Godin. 2021. "Review on the Integration of Phase Change Materials in Building Envelopes for Passive Latent Heat Storage" Applied Sciences 11, no. 19: 9305. https://doi.org/10.3390/app11199305
APA StyleSawadogo, M., Duquesne, M., Belarbi, R., Hamami, A. E. A., & Godin, A. (2021). Review on the Integration of Phase Change Materials in Building Envelopes for Passive Latent Heat Storage. Applied Sciences, 11(19), 9305. https://doi.org/10.3390/app11199305