Enhancement of Growth and Paramylon Production of Euglena gracilis by Upcycling of Spent Tomato Byproduct as an Alternative Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgal Strain and Medium
2.2. Cultivation Experiments with Different Carbon Source Types and Concentrations
2.2.1. Experiment Using Different Carbon Sources
2.2.2. Experiment Using Different Carbon Concentrations
2.3. Composition Analysis of STB
2.4. Cultivation Experiments under Different Substrate and pH Conditions
2.5. Microalgal Growth and Chemical Analyses
2.6. Statistical Analysis
3. Results
3.1. Biomass Production Based on Carbon Source and Concentration
3.2. Mixotrophic Cultivation Using the Synthetic Medium and STB at pH 3
3.3. Mixotrophic Cultivation Using Synthetic Medium and STB at pH 8
4. Discussion
4.1. Impact of Carbon Source Type and Concentration
4.2. Application of Spent Tomato Byproduct as an Alternative Medium
4.3. The Impact of Initial pH for Value-Added Production from E. gracilis Using STB
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lewis, A.; Guéguen, C. How growth conditions of Euglena gracilis cells influence cellular composition as evidenced by Fourier transform infrared spectroscopy and direct infusion high-resolution mass spectrometry. J. Appl. Phycol. 2020, 32, 153–163. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Wu, Q. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol. Bioeng. 2007, 98, 764–771. [Google Scholar] [CrossRef]
- Katiyar, R.; Gurjar, B.R.; Kumar, A.; Bharti, R.K.; Biswas, S.; Pruthi, V. A novel approach using low-cost Citrus limetta waste for mixotrophic cultivation of oleaginous microalgae to augment automotive quality biodiesel production. Enviro. Sci. Pollut. Res. 2019, 26, 16115–16124. [Google Scholar] [CrossRef]
- Ghosh, U.K. Utilization of kinnow peel extract with different wastewaters for cultivation of microalgae for potential biodiesel production. J. Environ. Chem. Eng. 2019, 7, 103135. [Google Scholar]
- Barsanti, L.; Ciurli, A.; Birindelli, L.; Gualtieri, P. Remediation of dairy wastewater by Euglena gracilis WZSL mutant and β-glucan production. J. Appl. Phycol. 2021, 33, 431–441. [Google Scholar] [CrossRef]
- Calixto, C.D.; Santana, J.K.S.; de Lira, E.B.; Sassi, P.G.P.; Rosenhaim, R.; Sassi, C.F.C.; da Conceição, M.M.; Sassi, R. Biochemical compositions and fatty acid profiles in four species of microalgae cultivated on household sewage and agro-industrial residues. Bioresour. Technol. 2016, 221, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Šantek, B.; Felski, M.; Friehs, K.; Lotz, M.; Flaschel, E. Production of paramylon, a β-1, 3-glucan, by heterotrophic cultivation of Euglena gracilis on potato liquor. Eng. Life. Sci. 2010, 10, 165–170. [Google Scholar]
- Ivušić, F.; Šantek, B. Optimization of complex medium composition for heterotrophic cultivation of Euglena gracilis and paramylon production. Bioprocess Biosyst. Eng. 2015, 38, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, D.; Lim, D.; Lim, S.; Park, S.; Kang, C.; Yu, J.; Lee, T. Paramylon production from heterotrophic cultivation of Euglena gracilis in two different industrial byproducts: Corn steep liquor and brewer’s spent grain. Algal Res. 2020, 47, 101826. [Google Scholar] [CrossRef]
- Knoblich, M.; Anderson, B.; Latshaw, D. Analyses of tomato peel and seed byproducts and their use as a source of carotenoids. J. Sci. Food Agric. 2005, 85, 1166–1170. [Google Scholar] [CrossRef]
- Mehta, P.; Singh, D.; Saxena, R.; Rani, R.; Gupta, R.P.; Puri, S.K.; Mathur, A.S. High-Value Coproducts from Algae—An Innovational Way to Deal with Advance Algal Industry. In Waste to Wealth; Energy, Environment, and Sustainability; Springer: Singapore, 2018; pp. 343–363. [Google Scholar]
- Rozzi, N.; Singh, R.; Vierling, R.; Watkins, B. Supercritical fluid extraction of lycopene from tomato processing byproducts. J. Agric. Food Chem. 2002, 50, 2638–2643. [Google Scholar] [CrossRef] [PubMed]
- Naviglio, D.; Caruso, T.; Iannece, P.; Aragòn, A.; Santini, A. Characterization of high purity lycopene from tomato wastes using a new pressurized extraction approach. J. Agric. Food Chem. 2008, 56, 6227–6231. [Google Scholar] [CrossRef] [PubMed]
- Karthika, D.; Kuriakose, S.; Krishnan, A.; Choudhary, P.; Rawson, A. Utilization of by-product from tomato processing industry for the development of new product. J. Food Sci. Technol. 2016, 7, 608. [Google Scholar]
- Hosotani, K.; Ohkochi, T.; Inui, H.; Yokota, A.; Nakano, Y.; Kitaoka, S. Photoassimilation of fatty acids, fatty alcohols and sugars by Euglena gracilis Z. Microbiology 1988, 134, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Bäumer, D.; Preisfeld, A.; Ruppel, H.G. Isolation and characterization of paramylon synthase from Euglena gracilis (euglenophyceae) 1. J. Phycol. 2001, 37, 38–46. [Google Scholar] [CrossRef]
- The R Project for Statistical Computing. Available online: http://www.R-project.org/ (accessed on 12 July 2021).
- Barsanti, L.; Vismara, R.; Passarelli, V.; Gualtieri, P. Paramylon (β-1, 3-glucan) content in wild type and WZSL mutant of Euglena gracilis. Effects of growth conditions. J. Appl. Phycol. 2001, 13, 59–65. [Google Scholar] [CrossRef]
- Rodríguez-Zavala, J.; Ortiz-Cruz, M.; Mendoza-Hernández, G.; Moreno-Sánchez, R. Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J. Appl. Microbiol. 2010, 109, 2160–2172. [Google Scholar] [CrossRef]
- Fujita, T.; Aoyagi, H.; Ogbonna, J.C.; Tanaka, H. Effect of mixed organic substrate on α-tocopherol production by Euglena gracilis in photoheterotrophic culture. Appl. Microbiol. Biotechnol. 2008, 79, 371–378. [Google Scholar] [CrossRef]
- Garlaschi, F.M.; Garlaschi, A.M.; Lombardi, A.; Forti, G. Effect of ethanol on the metabolism of Euglena gracilis. Plant Sci. Lett. 1974, 2, 29–39. [Google Scholar] [CrossRef]
- Mokrosnop, V.; Polishchuk, A.; Zolotareva, E. Accumulation of α-tocopherol and β-carotene in Euglena gracilis cells under autotrophic and mixotrophic culture conditions. Appl. Biochem. Microbiol. 2016, 52, 216–221. [Google Scholar] [CrossRef]
- Jeong, U.; Choi, J.; Kang, C.; Choi, B.; Kang, S. Effect of growth conditions on the biomass and lipid production of Euglena gracilis cells raised in mixotrophic culture. Korean J. Fish. Aquat. Sci. 2016, 49, 30–37. [Google Scholar]
- Kim, H.S.; Park, W.; Lee, B.; Seon, G.; Suh, W.I.; Moon, M.; Chang, Y.K. Optimization of heterotrophic cultivation of Chlorella sp. HS2 using screening, statistical assessment, and validation. Sci. Rep. 2019, 9, 1–13. [Google Scholar]
- Wang, L.; Li, Y.; Chen, P.; Min, M.; Chen, Y.; Zhu, J.; Ruan, R.R. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol. 2010, 101, 2623–2628. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xu, X.; Sun, K.; Li, H. Effects of fruit waste hydrolysates on biomass and chlorophyll a fluorescence parameters of Chlorella pyrenoidosa. Int. J. Environ. Bioener 2014, 9, 105–121. [Google Scholar]
- Heller, W.P.; Kissinger, K.R.; Matsumoto, T.K.; Keith, L.M. Utilization of papaya waste and oil production by Chlorella protothecoides. Algal Res. 2015, 12, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Chen, J.; Lim, P.; Wei, D. Enhanced single cell oil production by mixed culture of Chlorella pyrenoidosa and Rhodotorula glutinis using cassava bagasse hydrolysate as carbon source. Bioresour. Technol. 2018, 255, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Pratap, A.; Kumar, M.; Sibi, G. Fruit and Vegetable Waste Hydrolysates as Growth Medium for Higher Biomass and Lipid Production in Chlorella vulgaris. J. Environ. Manag. 2017, 4, 204–210. [Google Scholar]
- Wang, X.; Zhang, M.; Sun, Z.; Liu, S.; Qin, Z.; Mou, J.; Zhou, Z.; Lin, C.S.K. Sustainable lipid and lutein production from Chlorella mixotrophic fermentation by food waste hydrolysate. J. Hazard. Mater. 2020, 400, 123258. [Google Scholar] [CrossRef]
- Zhu, J.; Wakisaka, M. Growth promotion of Euglena gracilis by ferulic acid from rice bran. AMB Express 2018, 8, 16. [Google Scholar] [CrossRef]
- Danilov, R.; Ekelund, N. Effects of pH on the growth rate, motility and photosynthesis in Euglena gracilis. Folia Microbiol. 2001, 46, 549–554. [Google Scholar] [CrossRef]
- Abi, A.; Müller, C.; Jördening, H. Improved laminaribiose phosphorylase production by Euglena gracilis in a bioreactor: A comparative study of different cultivation methods. Biotechnol. Bioprocess Eng. 2017, 22, 272–280. [Google Scholar] [CrossRef]
- Khalil, Z.I.; Asker, M.M.; El-Sayed, S.; Kobbia, I.A. Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World J. Microbiol. Biotechnol. 2010, 26, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
Composition | Concentration |
---|---|
COD | 32,000 ± 950 mg L−1 |
T-N | 703 ± 22 mg L−1 |
T-P | 246 ± 2 mg L−1 |
pH | 4.2 ± 0.0 |
Fructose | 14,640 ± 100 mg L−1 |
Glucose | 13,120 ± 130 mg L−1 |
Citric acid | 6420 ± 110 mg L−1 |
Glutamic acid | 1240 ± 60 mg L−1 |
Tartaric acid | 597 ± 6 mg L−1 |
Malic acid | 714 ± 4 mg L−1 |
Ascorbic acid | 3.9 ± 0.3 mg L−1 |
Carbon Source | Cell Growth | Biomass Production | Paramylon Production | |||||
---|---|---|---|---|---|---|---|---|
Type | Concentration (g L−1) | Specific Cell Growth (d−1) | Doubling Time (d) | Max. Titer (g L−1) | Max. Productivity (g L−1 d−1) | Max. Titer (g L−1) | Max. Productivity (g L−1 d−1) | Max. Content (%) |
Glucose | 5 | 0.74 | 0.93 | 1.61 | 0.41 | 0.56 | 0.15 | 35.0 |
Glucose | 15 | 0.67 | 1.04 | 1.78 | 0.43 | 1.22 | 0.35 | 81.5 |
Glucose | 30 | 0.56 | 1.23 | 1.56 | 0.39 | 0.78 | 0.20 | 53.1 |
Glucose | 60 | 0.11 | 6.49 | 0.67 | 0.07 | 0.22 | n.d. | 41.7 |
Ethanol | 15 | 0.07 | 9.65 | 0.44 | 0.22 | 0.22 | 0.08 | 37.5 |
Lactate | 15 | 0.12 | 5.96 | 1.28 | 0.56 | 0.72 | 0.31 | 56.5 |
Substrate | Initial pH | Specific Growth Rate (d−1) | Doubling Time (d) | CO2 Biofixation Rate (g L−1 d−1) |
---|---|---|---|---|
STB | 3 | 1.51 | 0.46 | 2.85 |
STB | 8 | 1.12 | 0.62 | 2.14 |
CM | 3 | 0.79 | 0.88 | 1.50 |
CM | 8 | 0.71 | 0.98 | 1.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Wirasnita, R.; Lee, D.; Yu, J.; Lee, T. Enhancement of Growth and Paramylon Production of Euglena gracilis by Upcycling of Spent Tomato Byproduct as an Alternative Medium. Appl. Sci. 2021, 11, 8182. https://doi.org/10.3390/app11178182
Kim S, Wirasnita R, Lee D, Yu J, Lee T. Enhancement of Growth and Paramylon Production of Euglena gracilis by Upcycling of Spent Tomato Byproduct as an Alternative Medium. Applied Sciences. 2021; 11(17):8182. https://doi.org/10.3390/app11178182
Chicago/Turabian StyleKim, Sunah, Riry Wirasnita, Donghyun Lee, Jaecheul Yu, and Taeho Lee. 2021. "Enhancement of Growth and Paramylon Production of Euglena gracilis by Upcycling of Spent Tomato Byproduct as an Alternative Medium" Applied Sciences 11, no. 17: 8182. https://doi.org/10.3390/app11178182
APA StyleKim, S., Wirasnita, R., Lee, D., Yu, J., & Lee, T. (2021). Enhancement of Growth and Paramylon Production of Euglena gracilis by Upcycling of Spent Tomato Byproduct as an Alternative Medium. Applied Sciences, 11(17), 8182. https://doi.org/10.3390/app11178182