Late Reverberant Spectral Variance Estimation for Single-Channel Dereverberation Using Adaptive Parameter Estimator
Abstract
:1. Introduction
2. Problem Formulation
3. Brief Review of Habets Late Reverberant Spectral Variance Estimator
4. Parameter Estimation
4.1. Proposed Estimator
4.1.1. Frame Conditional Direct Sound Presence Probability
4.1.2. Estimated in Each Frame
5. Performance Evaluation
5.1. Setup
5.2. Results and Analysis
5.3. Speech Dereverberation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, W.; Huang, G.; Chen, J.; Benesty, J.; Cohen, I.; Kellermann, W. Robust Dereverberation With Kronecker Product Based Multichannel Linear Prediction. IEEE Signal Process. Lett. 2021, 28, 101–105. [Google Scholar] [CrossRef]
- Braun, S.; Schwartz, B.; Gannot, S.; Habets, E.A.P. Late reverberation PSD estimation for single-channel dereverberation using relative convolutive transfer functions. In Proceedings of the 2016 IEEE International Workshop on Acoustic Signal Enhancement (IWAENC), Xi’an, China, 13–16 September 2016; pp. 1–5. [Google Scholar]
- Habets, E.A.P.; Gannot, S.; Cohen, I. Late Reverberant Spectral Variance Estimation Based on a Statistical Model. IEEE Signal Process. Lett. 2009, 16, 770–773. [Google Scholar] [CrossRef]
- Naylor, P.A.; Gaubitch, N.D. Speech Dereverberation, 1st ed.; Springer Publishing Company Incorporated: Manhattan, NY, USA, 2010. [Google Scholar]
- Braun, S.; Kuklasiński, A.; Schwartz, O.; Thiergart, O.; Habets, E.A.P.; Gannot, S.; Doclo, S.; Jensen, J. Evaluation and Comparison of Late Reverberation Power Spectral Density Estimators. IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 26, 1056–1071. [Google Scholar] [CrossRef]
- Habets, E.A.P.; Gannot, S.; Cohen, I. Speech dereverberation using backward estimation of the late reverberant spectral variance. In Proceedings of the 2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel, Eilat, Israel, 3–5 December 2008; pp. 384–388. [Google Scholar]
- Eaton, J.; Gaubitch, N.D.; Moore, A.H.; Naylor, P.A. Estimation of Room Acoustic Parameters: The ACE Challenge. IEEE/ACM Trans. Audio Speech Lang. Process. 2016, 24, 1681–1693. [Google Scholar] [CrossRef] [Green Version]
- Cohen, I. Optimal speech enhancement under signal presence uncertainty using log-spectral amplitude estimator. IEEE Signal Process. Lett. 2002, 9, 113–116. [Google Scholar] [CrossRef]
- Erkelens, J.S.; Heusdens, R. Noise and late-reverberation suppression in time-varying acoustical environments. In Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, USA, 14–19 March 2010; pp. 4706–4709. [Google Scholar]
- Herzog, A.; Habets, E.A.P. Blind Single-Channel Dereverberation Using a Recursive Maximum-Sparseness-Power-Prediction-Model. In Proceedings of the 2018 16th International Workshop on Acoustic Signal Enhancement (IWAENC), Tokyo, Japan, 17–20 September 2018; pp. 356–360. [Google Scholar]
- Wolfe, P.; Godsill, S. Efficient Alternatives to the Ephraim and Malah Suppression Rule for Audio Signal Enhancement. EURASIP J. Adv. Signal Process. 2003, 2003, 910167. [Google Scholar] [CrossRef] [Green Version]
- Merimaa, J.; Peltonen, T.; Lokki, T. Concert Hall Impulse Responses Pori, Finland. 2005. Available online: http://www.acoustics.hut.fi/projects/poririrs/ (accessed on 27 August 2021).
- Taal, C.H.; Hendriks, R.C.; Heusdens, R.; Jensen, J. An Algorithm for Intelligibility Prediction of Time–Frequency Weighted Noisy Speech. IEEE Trans. Audio Speech Lang. Process. 2011, 19, 2125–2136. [Google Scholar] [CrossRef]
- Rix, A.W.; Beerends, J.G.; Hollier, M.P.; Hekstra, A.P. Perceptual evaluation of speech quality (PESQ)-a new method for speech quality assessment of telephone networks and codecs. In Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Proceedings (Cat. No.01CH37221), Salt Lake City, UT, USA, 7–11 May 2001; Volume 2, pp. 749–752. [Google Scholar]
Proposed | Conventional | MSPP | ||||
---|---|---|---|---|---|---|
SRR | 7.81 | 7.73 | 7.80 | 8.61 | 6.80 | 7.60 |
LSD | −3.47 | −3.46 | −3.57 | −3.77 | −3.29 | −3.82 |
STOI | 0.0678 | 0.0693 | 0.0765 | 0.0785 | 0.0676 | 0.0362 |
PESQ | 0.18 | 0.17 | 0.20 | 0.24 | 0.16 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Feng, X.; Shen, Y. Late Reverberant Spectral Variance Estimation for Single-Channel Dereverberation Using Adaptive Parameter Estimator. Appl. Sci. 2021, 11, 8054. https://doi.org/10.3390/app11178054
Zhang Z, Feng X, Shen Y. Late Reverberant Spectral Variance Estimation for Single-Channel Dereverberation Using Adaptive Parameter Estimator. Applied Sciences. 2021; 11(17):8054. https://doi.org/10.3390/app11178054
Chicago/Turabian StyleZhang, Zhaoqi, Xuelei Feng, and Yong Shen. 2021. "Late Reverberant Spectral Variance Estimation for Single-Channel Dereverberation Using Adaptive Parameter Estimator" Applied Sciences 11, no. 17: 8054. https://doi.org/10.3390/app11178054
APA StyleZhang, Z., Feng, X., & Shen, Y. (2021). Late Reverberant Spectral Variance Estimation for Single-Channel Dereverberation Using Adaptive Parameter Estimator. Applied Sciences, 11(17), 8054. https://doi.org/10.3390/app11178054