Locking Phenomena in Semiconductor Lasers near Threshold with Optical Feedback and Sinusoidal Current Modulation
Abstract
1. Introduction
2. Model
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lang, R.; Kobayashi, K. External optical feedback effects on semiconductor injection-laser properties. IEEE J. Quantum Electron. 1980, 16, 347. [Google Scholar] [CrossRef]
- Lenstra, D.; Verbeek, B.H.; Denboef, A.J. Coherence collapse in single-mode semiconductor-lasers due to optical feedback. IEEE J. Quantum Electron. 1985, 21, 674. [Google Scholar] [CrossRef]
- Mork, J.; Tromborg, B.; Mark, J. Chaos in semiconductor-lasers with optical feedback: Theory and experiment. IEEE J. Quantum Electron. 1992, 28, 93. [Google Scholar] [CrossRef]
- Ohtsubo, J. Semiconductor Lasers: Stability, Instability and Chaos, 4th ed.; Springer: Berlin, Germany, 2017. [Google Scholar]
- Baums, D.; Elsasser, W.; Gobel, E.O. Farey tree and Devil’s staircase of a modulated external-cavity semiconductor laser. Phys. Rev. Lett. 1989, 63, 155. [Google Scholar] [CrossRef]
- Sacher, S.; Baums, D.; Panknin, P.; Elsasser, W.; Gobel, E.O. Intensity instabilities of semiconductor-lasers under current modulation, external light injection, and delayed feedback’. Phys. Rev. A 1992, 45, 1893. [Google Scholar] [CrossRef] [PubMed]
- Takiguchi, Y.; Liu, Y.; Ohtsubo, J. Low-frequency fluctuation induced by injection-current modulation in semiconductor lasers with optical feedback. Opt. Lett. 1998, 23, 1369. [Google Scholar] [CrossRef]
- Sukow, D.W.; Gauthier, D.J. Entraining power-dropout events in an external-cavity semiconductor laser using weak modulation of the injection current. IEEE J. Quantum Electron. 2000, 36, 175. [Google Scholar] [CrossRef]
- Mendez, J.M.; Laje, R.; Giudici, M.; Aliaga, J.; Mindlin, G.B. Dynamics of periodically forced semiconductor laser with optical feedback. Phys. Rev. E 2001, 63, 066218. [Google Scholar] [CrossRef]
- Lawrence, J.S.; Kane, D.M. Nonlinear dynamics of a laser diode with optical feedback systems subject to modulation. IEEE J. Quantum Electron. 2002, 38, 185. [Google Scholar] [CrossRef][Green Version]
- Marino, F.; Giudici, M.; Barland, S.; Balle, S. Experimental evidence of stochastic resonance in an excitable optical system. Phys. Rev. Lett. 2002, 88, 040601. [Google Scholar] [CrossRef] [PubMed]
- Lam, W.-S.; Guzdar, P.N.; Roy, R. Effect of spontaneous emission noise and modulation on semiconductor lasers near threshold with optical feedback. Int. J. Mod. Phys. B 2003, 17, 4123. [Google Scholar] [CrossRef]
- Torre, M.S.; Masoller, C.; Mandel, P.; Shore, K.A. Transverse-mode dynamics in directly modulated vertical-cavity surface-emitting lasers with optical feedback. IEEE J. Quantum Electron. 2004, 40, 620. [Google Scholar] [CrossRef]
- Toomey, J.P.; Kane, D.M.; Lee, M.W.; Shore, K.A. Nonlinear dynamics of semiconductor lasers with feedback and modulation. Opt. Express 2010, 18, 16955. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; El-Sayed, N.Z.; Ibrahim, H. Chaos and noise control by current modulation in semiconductor lasers subject to optical feedback. Eur. Phys. J. D 2012, 66, 141. [Google Scholar] [CrossRef]
- Spitz, O.; Wu, J.G.; Carras, M.; Wong, C.W.; Grillot, F. Chaotic optical power dropouts driven by low frequency bias forcing in a mid-infrared quantum cascade laser. Sci. Rep. 2019, 9, 4451. [Google Scholar] [CrossRef] [PubMed]
- Spitz, O.; Wu, J.G.; Herdt, A.; Carras, M.; Elsasser, W.; Wong, C.W.; Grillot, F. Investigation of chaotic and spiking dynamics in mid-infrared quantum cascade lasers operating continuous-waves and under current modulation. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1200311. [Google Scholar] [CrossRef]
- Hong, Y.; Shore, K.A. Statistical measures of the power dropout ratio in semiconductor lasers subject to optical feedback. Opt. Lett. 2005, 30, 3332. [Google Scholar] [CrossRef]
- Aragoneses, A.; Sorrentino, T.; Perrone, S.; Gauthier, D.J.; Torrent, M.C.; Masoller, C. Experimental and numerical study of the symbolic dynamics of a modulated external-cavity semiconductor laser. Opt. Express 2014, 22, 4705. [Google Scholar] [CrossRef]
- Sorrentino, T.; Quintero-Quiroz, C.; Aragoneses, A.; Torrent, M.C.; Masoller, C. Effects of periodic forcing on the temporally correlated spikes of a semiconductor laser with feedback. Opt. Express 2015, 23, 5571. [Google Scholar] [CrossRef]
- Tiana-Alsina, J.; Quintero-Quiroz, C.; Panozzo, M.; Torrent, M.C.; Masoller, C. Experimental study of modulation waveforms for entraining the spikes emitted by a semiconductor laser with optical feedback. Opt. Express 2018, 26, 9298. [Google Scholar] [CrossRef]
- Torre, M.S.; Masoller, C.; Abraham, N.B.; Ranea-Sandoval, H.F. Carrier dynamics in semiconductor lasers operating in the low-frequency fluctuation regime. J. Opt. B Quantum Semiclass. Opt. 2000, 2, 563. [Google Scholar] [CrossRef]
- Barland, S.; Spinicelli, P.; Giacomelli, G.; Marin, F. Measurement of the working parameters of an air-post vertical-cavity surface-emitting laser. IEEE J. Quantum Electron. 2005, 41, 1235. [Google Scholar] [CrossRef]
- Torcini, A.; Barland, S.; Giacomelli, G.; Marin, F. Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics. Phys. Rev. A 2006, 74, 063801. [Google Scholar] [CrossRef]
- Zamora-Munt, J.; Masoller, C.; Garcia-Ojalvo, J. Transient low-frequency fluctuations in semiconductor lasers with optical feedback. Phys. Rev. A 2010, 81, 033820. [Google Scholar] [CrossRef]
- Heil, T.; Fischer, I.; Elsasser, W. Coexistence of low-frequency fluctuations and stable emission on a single high-gain mode in semiconductor lasers with external optical feedback. Phys. Rev. A 1998, 58, R2672. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Panozzo, M.; Quintero-Quiroz, C.; Tiana-Alsina, J.; Torrent, M.C.; Masoller, C. Experimental characterization of the transition to coherence collapse in a semiconductor laser with optical feedback. Chaos 2017, 27, 114315. [Google Scholar] [CrossRef] [PubMed]
- A Video of the Experimental Intensity Time Series, without Current Modulation, Can Be Seen Here: Noisy Fluctuations Gradually Become Well-Defined Spikes, Which Become Faster and Less Pronounced as the Pump Current Increases. Available online: https://youtu.be/nltBQG_IIWQ (accessed on 17 June 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiana-Alsina, J.; Masoller, C. Locking Phenomena in Semiconductor Lasers near Threshold with Optical Feedback and Sinusoidal Current Modulation. Appl. Sci. 2021, 11, 7871. https://doi.org/10.3390/app11177871
Tiana-Alsina J, Masoller C. Locking Phenomena in Semiconductor Lasers near Threshold with Optical Feedback and Sinusoidal Current Modulation. Applied Sciences. 2021; 11(17):7871. https://doi.org/10.3390/app11177871
Chicago/Turabian StyleTiana-Alsina, Jordi, and Cristina Masoller. 2021. "Locking Phenomena in Semiconductor Lasers near Threshold with Optical Feedback and Sinusoidal Current Modulation" Applied Sciences 11, no. 17: 7871. https://doi.org/10.3390/app11177871
APA StyleTiana-Alsina, J., & Masoller, C. (2021). Locking Phenomena in Semiconductor Lasers near Threshold with Optical Feedback and Sinusoidal Current Modulation. Applied Sciences, 11(17), 7871. https://doi.org/10.3390/app11177871