Optoelectronic Instrumentation and Measurement Strategies for Optical Chemical (Bio)Sensing
Abstract
:1. Introduction
2. Optical Devices
2.1. Light Sources
2.2. Light Detectors
2.3. Wavelength Selector
2.4. Optical Fibers
- Step-index multimode optical fibers, in which the refractive index is constant;
- Graded-index multimode optical fibers, in which the refractive index varies in parabolic shape from a maximum on the conductor axis to a minimum on the coating. The modal dispersion of this type of fiber is lower, although it is more expensive.
2.5. Optical Sensors
- (1)
- Extrinsic sensors use fiber optics only as a means of transmitting light from the light source to the sensitive area and from this to the photodetector. We refer to this type of sensor in this article;
- (2)
- Intrinsic sensors use fiber optics as a light guide and as a transducer. The variable to be measured modifies certain properties of the fiber, such as the refractive index or the absorption coefficient. These sensors can use interferometric configurations, fiber Bragg grating (FBG), long-period fiber grating (LPFG), or special fibers (doped fibers) designed to be sensitive to specific perturbations. These types of sensors are commonly used as physical sensors (e.g., pressure and temperature gauges), although their applicability for biochemical species is restricted.
3. Spectroscopic Techniques
3.1. Absorbance, Reflectance, and Luminescence
3.2. Measurement of Luminescence Intensity
3.3. Measurement of Luminescence Lifetimes
3.3.1. Measurement of Lifetime in the Frequency Domain
3.3.2. Measurement of Lifetime in the Time Domain
3.3.3. Ratiometric Techniques
4. Design of Applications
4.1. Fiber Optic pH Sensor Based on Fluorescent Ratiometric Intensity Measurement
4.1.1. Optical Sensor Characterization
- (1)
- The pH value increases the emission of the fluorescent light in a quasilinear manner;
- (2)
- The excitation and emission peaks of the sensor are close to each other (λexc = 528 nm, λemi = 549 nm). To avoid overlapping between both spectra, a light source with an emission peak below the sensing phase excitation maximum may be adequate;
- (3)
- The excitation spectra depend on the pH and their intensity change in the same way as the emission spectra.
4.1.2. Measurement Technique
4.1.3. Measurement System
4.2. Fiber Optic Oxygen Sensor Based on Phosphorescence Lifetime Measurement
4.2.1. Optical Sensor Characterization
4.2.2. Measurement Method
4.2.3. Measurement System
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, X.-D.; Wolfbeis, O.S. Fiber-optic chemical sensors and biosensors (2015–2019). Anal. Chem. 2019, 92, 397–430. [Google Scholar] [CrossRef]
- Wang, X.-D.; Wolfbeis, O.S. Fiber-optic chemical sensors and biosensors (2013–2015). Anal. Chem. 2015, 88, 203–227. [Google Scholar] [CrossRef]
- Pospíšilová, M.; Kuncová, G.; Trögl, J. Fiber-optic chemical sensors and fiber-optic bio-sensors. Sensors 2015, 15, 25208–25259. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.-J.; Gu, B.; An, Q.-F.; Yang, C.; Guan, Y.L.; Yong, K.-T. Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications. Co-Ord. Chem. Rev. 2018, 376, 348–392. [Google Scholar] [CrossRef]
- Fang, Z.; Chin, K.K.; Qu, R.; Cai, H.; Chang, K. Fundamentals of Optical Fiber Sensors; Wiley: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- McDonagh, C.; Burke, C.S.; MacCraith, B.D. Optical chemical sensors. Chem. Rev. 2008, 108, 400–422. [Google Scholar] [CrossRef] [PubMed]
- Wolfbeis, O.S.; Weidgans, B.M. Fiber optic chemical sensors and biosensors: A view back. In Optical Chemical Sensors; Springer: Dordrecht, The Netherlands, 2006; pp. 17–44. [Google Scholar] [CrossRef]
- Badugu, R.; Lakowicz, J.R.; Geddes, C.D. A wavelength-ratiometric pH sensitive probe based on the boronic acid moiety and suppressed sugar response. Dye Pigment. 2004, 61, 227–234. [Google Scholar] [CrossRef]
- Badugu, R.; Lakowicz, J.R.; Geddes, C.D. Excitation and emission wavelength ratiometric cyanide-sensitive probes for physiological sensing. Anal. Biochem. 2004, 327, 82–90. [Google Scholar] [CrossRef]
- Dustin, L. Ratiometric analysis of calcium mobilization. Clin. Appl. Immunol. Rev. 2000, 1, 5–15. [Google Scholar] [CrossRef]
- Khalil, G.E.; Costin, C.; Crafton, J.; Jones, G.; Grenoble, S.; Gouterman, M.; Callis, J.B.; Dalton, L.R. Dual-luminophor pressure-sensitive paint: I. Ratio of reference to sensor giving a small temperature dependency. Sens. Actuators B Chem. 2004, 97, 13–21. [Google Scholar] [CrossRef]
- Liebsch, G.; Klimant, I.; Krause, C.; Wolfbeis, O.S. Fluorescent imaging of PH with optical sensors using time domain dual lifetime referencing. Anal. Chem. 2001, 73, 4354–4363. [Google Scholar] [CrossRef]
- Strömberg, N.; Hulth, S. A fluorescence ratiometric detection scheme for ammonium ions based on the solvent sensitive dye MC 540. Sens. Actuators B Chem. 2003, 90, 308–318. [Google Scholar] [CrossRef]
- Kostov, Y.; Harms, P.; Rao, G.; Pilato, R.S. Ratiometric oxygen sensing: Detection of dual-emission ratio through a single emission filter. Analyst 2000, 125, 1175–1178. [Google Scholar] [CrossRef] [PubMed]
- Kostov, Y.; Harms, P.; Rao, G. Ratiometric sensing using dual-frequency lifetime discrimination. Anal. Biochem. 2001, 297, 105–108. [Google Scholar] [CrossRef]
- Mayr, T.; Klimant, I.; Wolfbeis, O.S.; Werner, T. Dual lifetime referenced optical sensor membrane for the determination of copper (II) ions. Anal. Chim. Acta 2002, 462, 1–10. [Google Scholar] [CrossRef]
- Modlin, D.N.; Milanovich, F.P.; Wolfbeis, O.S. (Eds.) Instrumentation for Fiber Optic Chemical Sensors; CRC Press: Boca Raton, FL, USA, 1991; Chapter 6; Volume I, pp. 237–302. [Google Scholar]
- Kostov, Y.; Rao, G. Low-cost optical instrumentation for biomedical measurements. Rev. Sci. Instrum. 2000, 71, 4361–4374. [Google Scholar] [CrossRef]
- Hamamatsu Photonics. Available online: https://www.hamamatsu.com/us/en/product/light-and-radiation-sources/lamp/index.html (accessed on 10 January 2021).
- Thorlabs, Inc. Available online: https://www.thorlabs.com/ (accessed on 26 November 2019).
- Hamamatsu Photonics. Available online: https://www.hamamatsu.com/eu/en/index.html (accessed on 10 January 2021).
- Hamamatsu Photonics. Available online: https://www.hamamatsu.com/us/en/product/optical-sensors/pmt/applications/index.html (accessed on 16 August 2021).
- Hergert, E.; Hamamatsu Corporation. Guide to Detector Selection. Available online: https://hub.hamamatsu.com/jp/en/technical-note/guide-detector-selection/index.html (accessed on 25 August 2021).
- Shimadzu. Available online: https://www.shimadzu.com/an/service-support/technical-support/analysis-basics/fundamentals-uv/detectors.html (accessed on 16 August 2021).
- Edmund Optics. Available online: https://www.edmundoptics.es (accessed on 10 January 2021).
- OSI Optoelectronics. Available online: https://osioptoelectronics.com/home.aspx (accessed on 10 January 2021).
- Ghatak, A.; Thyagarajan, K. Introduction to Fiber Optics; Cambridge University Press: Cambridge, MA, USA, 1998. [Google Scholar] [CrossRef]
- López-Higuera, J.M. Handbook of Optical Fibre Sensing Technology; Wiley: Hoboken, NJ, USA, 2002; ISBN 978-0-471-82053-6. [Google Scholar]
- Méndez, A.; Morse, T. Specialty Optical Fibers Handbook; Academic: Burlington, VT, USA, 2007. [Google Scholar] [CrossRef]
- Rehman, S.; Norin, L. Specialty Optical Fibers for Harsh Environments. Available online: http://www.fiberlabs.co.jp/opticalguide/FibertronixFeatReprint.pdf (accessed on 10 January 2021).
- Broadway, C.; Kinet, D.; Theodosiou, A.; Kalli, K.; Gusarov, A.; Caucheteur, C.; Mégret, P. CYTOP fibre BRAGG grating sensors for harsh radiation environments. Sensors 2019, 19, 2853. [Google Scholar] [CrossRef] [Green Version]
- Liao, T.; Pei, Y.; Xu, J.; Lin, H.; Ning, T. Fiber Bragg grating temperature sensors applied in harsh environment of aerospace. In Proceedings of the Asia Communications and Photonics Conference, Hangzhou, China, 26–29 October 2018. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. Fiber-optic chemical sensors and biosensors. Anal. Chem. 2004, 76, 3269–3284. [Google Scholar] [CrossRef]
- Kulmala, S.; Suomi, J. Current status of modern analytical luminescence methods. Anal. Chim. Acta 2003, 500, 21–69. [Google Scholar] [CrossRef]
- Holst, G.; Mizaikoff, B. Fiber optic sensors for environmental applications. In Handbook of Optical Fibre Sensing Technology; John Wiley & Sons: Chichester, UK, 2002; pp. 729–755, ISBN 10: 012369406X. [Google Scholar]
- Lakowicz, J.R.; Masters, B.R. Principles of fluorescence spectroscopy, third edition. J. Biomed. Opt. 2008, 13, 029901–029902. [Google Scholar] [CrossRef]
- Gewehr, P.M.; Delpy, D.T. Optical oxygen sensor based on phosphorescence lifetime quenching and employing a polymer immobilised metalloporphyrin probe—Part I: Theory and instrumentation. Med Biol. Eng. Comput. 1993, 31, 2–10. [Google Scholar] [CrossRef]
- McDonagh, C.; Kolle, C.; McEvoy, A.; Dowling, D.; Cafolla, A.; Cullen, S.; MacCraith, B. Phase fluorometric dissolved oxygen sensor. Sens. Actuators B Chem. 2001, 74, 124–130. [Google Scholar] [CrossRef]
- Van Orden, A.; Fogarty, K.; Jung, J. Fluorescence fluctuation spectroscopy: A coming of age story. Appl. Spectrosc. 2004, 58, 122A–137A. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.S.; James, J. Instrumental Analysis; Cengage Learning: Boston, MA, USA, 2018; ISBN-13: 978-1305577213. [Google Scholar]
- Dou, X.; Geng, E.; Cox, J.M.; Hize, Y. Generalized two-dimensional correlation spectroscopy. Sci. China Ser. B Chem. 2004, 47, 257. [Google Scholar] [CrossRef]
- Geddes, C.D. Optical halide sensing using fluorescence quenching: Theory, simulations and applications—A review. Meas. Sci. Technol. 2001, 12, R53–R88. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, A.K.; McDonagh, C.M.; MacCraith, B.D. Dissolved oxygen sensor based on fluorescence quenching of oxygen-sensitive ruthenium complexes immobilized in sol–gel-derived porous silica coatings. Analyst 1996, 121, 785–788. [Google Scholar] [CrossRef]
- Valledor, M.; Campo, J.C.; Sánchez-Barragán, I.; Costa-Fernández, J.M.; Alvarez, J.C.; Sanz-Medel, A. Determination of phosphorescence lifetimes in the presence of high background signals using phase-shift measurements. Sens. Actuators B Chem. 2006, 113, 249–258. [Google Scholar] [CrossRef]
- Valledor, M.; Campo, J.C.; Sánchez-Barragán, I.; Viera, J.C.; Costa-Fernandez, J.M.; Sanz-Medel, A. Luminescent ratiometric method in the frequency domain with dual phase-shift measurements: Application to oxygen sensing. Sens. Actuators B Chem. 2006, 117, 266–273. [Google Scholar] [CrossRef]
- García, J.D.; Costa-Fernandez, J.M.; García, N.B.; Colmenar, I.A.; Campo, J.C.; Perez, M.A.; Sanz-Medel, A. Development of a prototype instrument for multiposition sensing of dissolved oxygen by using room-temperature phosphorescence measurements. Appl. Spectrosc. 2002, 56, 947–951. [Google Scholar] [CrossRef]
- Sánchez-Barragán, I.; Costa-Fernandez, J.M.; Sanz-Medel, A.; Valledor, M.; Ferrero, F.J.; Campo, J.C. A ratiometric approach for pH optosensing with a single fluorophore indicator. Anal. Chim. Acta 2006, 562, 197–203. [Google Scholar] [CrossRef]
- Martin, F.J.F.; Rodriguez, J.C.C.; AlvarezAnton, J.; VieraPerez, J.; Sanchez-Barragan, I.; Costa-Fernandez, J.; Sanz-Medel, A. Design of a low-cost optical instrument for PH fluorescence measurements. IEEE Trans. Instrum. Meas. 2006, 55, 1215–1221. [Google Scholar] [CrossRef]
- Rodriguez, J.; Garcia, M.; Vega, M.; Ferrero, F. Measurement of low oxygen concentrations by phosphorescence lifetime using optical fibers. IEEE Trans. Instrum. Meas. 1999, 48, 949–955. [Google Scholar] [CrossRef]
- Bordel, N.; Campo, J.C.; Ferrero, F.J.; Sanz-Medel, A.; Costa-Fernandez, J.M.; Pérez, M.A. Portable fibre optic oxygen sensor based on room-temperature phosphor escence lifetime. Microchim. Acta 2000, 134, 145–152. [Google Scholar] [CrossRef]
- Ferrero, F.J.; Valledor, M.; Campo, J.C.; López, A.; Llano-Suárez, P.; Fernández-Arguelles, M.T.; Costa-Fernández, J.M.; Soldado, A. Portable instrument for monitoring environmental toxins using immobilized quantum dots as the sensing material. Appl. Sci. 2020, 10, 3246. [Google Scholar] [CrossRef]
- Costa-Fernández, J.; Diaz-Garcı́a, M.; Sanz-Medel, A. Sol–gel immobilized room-temperature phosphorescent metal-chelate as luminescent oxygen sensing material. Anal. Chim. Acta 1998, 360, 17–26. [Google Scholar] [CrossRef]
- Pérez, M.A.; González, O.; Arias, J.R. Optical fiber sensors for chemical and biological measurements. Curr. Dev. Optical Fiber Technol. 2013. [Google Scholar] [CrossRef] [Green Version]
Gas Discharge Lamps | LEDs | Laser Diodes |
---|---|---|
|
|
|
Photodiodes | Avalanche Photodiodes | Photomultipliers |
---|---|---|
|
|
|
Optical Filters | Monochromators |
---|---|
|
|
Single-Mode Fiber | Graded-Index Multimode Fiber | Step-Index Multimode Fiber |
---|---|---|
|
|
|
Feature | Fluorescence | Phosphorescence |
---|---|---|
Probability of happening |
|
|
Emission wavelength |
|
|
Time in the excited state |
|
|
Light intensity |
|
|
Spectroscopy Technique | Advantages | Disadvantages |
---|---|---|
Measurement of light intensity |
|
|
Ratiometric intensity measurement |
|
|
Measurement of lifetime in the time domain |
|
|
Measurement of lifetime in the frequency domain |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín, F.F.; Llopis, M.V.; Rodríguez, J.C.C.; Martínez, A.L.; Cabezuelo, A.S.; Fernández-Arguelles, M.T.; Costa-Fernández, J.M. Optoelectronic Instrumentation and Measurement Strategies for Optical Chemical (Bio)Sensing. Appl. Sci. 2021, 11, 7849. https://doi.org/10.3390/app11177849
Martín FF, Llopis MV, Rodríguez JCC, Martínez AL, Cabezuelo AS, Fernández-Arguelles MT, Costa-Fernández JM. Optoelectronic Instrumentation and Measurement Strategies for Optical Chemical (Bio)Sensing. Applied Sciences. 2021; 11(17):7849. https://doi.org/10.3390/app11177849
Chicago/Turabian StyleMartín, Francisco Ferrero, Marta Valledor Llopis, Juan C. Campo Rodríguez, Alberto López Martínez, Ana Soldado Cabezuelo, María T. Fernández-Arguelles, and José M. Costa-Fernández. 2021. "Optoelectronic Instrumentation and Measurement Strategies for Optical Chemical (Bio)Sensing" Applied Sciences 11, no. 17: 7849. https://doi.org/10.3390/app11177849
APA StyleMartín, F. F., Llopis, M. V., Rodríguez, J. C. C., Martínez, A. L., Cabezuelo, A. S., Fernández-Arguelles, M. T., & Costa-Fernández, J. M. (2021). Optoelectronic Instrumentation and Measurement Strategies for Optical Chemical (Bio)Sensing. Applied Sciences, 11(17), 7849. https://doi.org/10.3390/app11177849