Effects in the Optical and Structural Properties Caused by Mg or Zn Doping of GaN Films Grown via Radio-Frequency Magnetron Sputtering Using Laboratory-Prepared Targets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis for the Laboratory-Prepared Targets
2.2. Mg- or Zn-Doped GaN Films
2.3. Characterizations
3. Results and Discussion
3.1. Structural Analysis
3.2. Electron Microscopy, Profilometry and Resistivity
3.3. Optical Analysis
3.4. Raman Scattering
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amano, H.; Baines, Y.; Beam, E.; Borga, M.; Bouchet, T.; Chalker, P.R.; Charles, M.; Chen, K.J.; Chowdhury, N.; Chu, R.; et al. The 2018 GaN power electronics roadmap. J. Phys. D Appl. Phys. 2018, 51, 163001. [Google Scholar] [CrossRef]
- Nahhas, A.M. Review of AlGaN/GaN HEMTs based devices. Am. J. Nanomater. 2019, 7, 10–21. [Google Scholar] [CrossRef]
- Andreev, B.A.; Kudryavtsev, K.; Yablonskiy, A.N.; Lobanov, D.N.; Bushuykin, P.A.; Krasilnikova, L.V.; Skorokhodov, E.V.; Yunin, P.A.; Novikov, A.V.; Davydov, V.Y.; et al. Towards the indium nitride laser: Obtaining infrared stimulated emission from planar monocrystalline InN structures. Sci. Rep. 2018, 8, 9454. [Google Scholar] [CrossRef] [PubMed]
- Vergeles, P.; Orlov, V.; Polyakov, A.; Yakimov, E.; Kim, T.; Lee, I.-H. Recombination and optical properties of dislocations gliding at room temperature in GaN under applied stress. J. Alloys Compd. 2019, 776, 181–186. [Google Scholar] [CrossRef]
- Park, T.H.; Lee, T.H.; Kim, T.G. Al2O3/AlN/Al-based backside diffuse reflector for high-brightness 370-nm AlGaN ultraviolet light-emitting diodes. J. Alloys Compd. 2019, 776, 1009–1015. [Google Scholar] [CrossRef]
- Kumagai, N.; Takahashi, T.; Yamada, H.; Cong, G.; Wang, X.-L.; Shimizu, M. Fabrication of submicron active-region-buried GaN hexagonal frustum structures by selective area growth for directional micro-LEDs. J. Cryst. Growth 2019, 507, 437–441. [Google Scholar] [CrossRef]
- Bui, K.M.; Iwata, J.-I.; Kangawa, Y.; Shiraishi, K.; Shigeta, Y.; Oshiyama, A. First-principle study of ammonia decomposition and nitrogen incorporation on the GaN surface in metal organic vapor phase epitaxy. J. Cryst. Growth 2019, 507, 421–424. [Google Scholar] [CrossRef]
- Kim, D.; Park, Y.S.; Kang, D.; Kim, K.-K.; Seong, T.-Y.; Amano, H. Combined effects of V pits and chip size on the electrical and optical properties of green InGaN-based light-emitting diodes. J. Alloys Compd. 2019, 796, 146–152. [Google Scholar] [CrossRef]
- Lu, M.; Wang, G.; Yao, C.S. Gallium Nitride for Nuclear Batteries. Adv. Mater. Res. 2011, 343–344, 56–61. [Google Scholar] [CrossRef]
- Amano, H.; Kito, M.; Hiramatsu, K.; Akasaki, I. P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI). Jpn. J. Appl. Phys. 1989, 28, L2112–L2114. [Google Scholar] [CrossRef]
- Monemar, B.; Paskov, P.; Pozina, G.; Hemmingsson, C.; Bergman, P.; Lindgren, D.; Samuelson, L.; Ni, X.; Morkoç, H.; Paskova, T.; et al. Photoluminescence of Mg-doped m -plane GaN grown by MOCVD on bulk GaN substrates. Phys. Status Solidi 2011, 208, 1532–1534. [Google Scholar] [CrossRef] [Green Version]
- Demchenko, D.O.; Reshchikov, M.A. Blue luminescence and Zn acceptor in GaN. Phys. Rev. B 2013, 88, 115204. [Google Scholar] [CrossRef] [Green Version]
- Arifin, P.; Sugianto; Subagio, A.; Sutanto, H.; Dwiputra, D.; Florena, F.F.; Keintjem, A.C.; Khaeroni, R. Room-temperature photoluminescence of Mg-doped GaN thin films grown by plasma-assisted MOCVD. AIP Adv. 2020, 10, 045123. [Google Scholar] [CrossRef]
- Calleja, E.; Sánchez-Garcıía, M.; Calle, F.; Naranjo, F.; Muñoz, E.; Jahn, U.; Ploog, K.; Sanchez, J.; Calleja, J.; Saarinen, K.; et al. Molecular beam epitaxy growth and doping of III-nitrides on Si(111): Layer morphology and doping efficiency. Mater. Sci. Eng. B 2001, 82, 2–8. [Google Scholar] [CrossRef]
- Katsikini, M.; Papagelis, K.; Paloura, E.C.; Ves, S. Raman study of Mg, Si, O, and N implanted GaN. J. Appl. Phys. 2003, 94, 4389. [Google Scholar] [CrossRef] [Green Version]
- Gastellóu, E.; Morales, C.; García, R.; García, G.; Hirata, G.A.; Galeazzi, R.; Herrera, A.M.; Rosendo, E.; Díaz, T.; Ramos-Serrano, J.R.; et al. Enhanced crystalline size of undoped GaN powders obtained by nitridation of metallic gallium. Opt. Mater. 2018, 83, 220–224. [Google Scholar] [CrossRef]
- Gastellóu, E.; Morales, C.; García, R.; García, G.; Hirata, G.A.; Herrera, A.M.; Galeazzi, R.; Rosendo, E.; Díaz, T.; Tejeda, E.M. P-type GaN powders obtained by nitridation of Ga-Mg liquid metallic solution. J. Alloys Compd. 2019, 772, 1024–1029. [Google Scholar] [CrossRef]
- Gastellóu, E.; Morales, C.; García, G.; García, R.; Hirata, G.A.; Herrera, A.M.; Galeazzi, R.; Rosendo, E.; Díaz, T. Influence of the GaAs crystals diffusion in the shift towards low energies in the photoluminescence emission band of the GaN/GaNbuffer/GaAs structure. Opt. Mater. 2019, 88, 277–281. [Google Scholar] [CrossRef]
- Gastellóu, E.; Morales, C.; García, G.; García, R.; Hirata, G.A.; Herrera, A.M.; Galeazzi, R.; Rosendo, E.; Díaz, T. Zinc doping of Ga-rich GaN powders obtained by nitridation of the Ga-Zn liquid metallic solution. J. Alloys Compd. 2019, 783, 927–934. [Google Scholar] [CrossRef]
- Arakawa, Y.; Ueno, K.; Kobayashi, A.; Ohta, J.; Fujioka, H. High hole mobility p-type GaN with low residual hydrogen concentration prepared by pulsed sputtering. APL Mater. 2016, 4, 086103. [Google Scholar] [CrossRef] [Green Version]
- Gastellóu, E.; García, G.; Morales, C.; Herrera, A.M.; García, R.; Hirata, G.A.; Robles, M.; Rodríguez, J.A.; Rosendo, E.; Díaz, T. Crystalline and luminescence changes due to nitridation of undoped GaN powders obtained by pyrolysis from an organometallic complex. Opt. Mater. 2019, 98, 109456. [Google Scholar] [CrossRef]
- Huq, H.F.; Garza, R.Y.; Garcia-Perez, R. Characteristics of GaN Thin Films Using Magnetron Sputtering System. J. Mod. Phys. 2016, 7, 2028–2037. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-L.; Xie, R.-J.; Hirosaki, N.; Dierre, B.; Sekiguchi, T.; Yajima, Y. Preparation and Cathodoluminescence of Mg-Doped and Zn-Doped GaN Powders. J. Am. Ceram. Soc. 2008, 91, 1711–1714. [Google Scholar] [CrossRef]
- Reshchikov, M.A.; Morkoç, H. Luminescence properties of defects in GaN. J. Appl. Phys. 2005, 97, 061301. [Google Scholar] [CrossRef]
- Ramaiah, K.S.; Su, Y.; Chang, S.; Juang, F.; Chen, C. Photoluminescence characteristics of Mg- and Si-doped GaN thin films grown by MOCVD technique. J. Cryst. Growth 2000, 220, 405–412. [Google Scholar] [CrossRef]
- Reshchikov, M.A.; Xie, J.; He, L.; Gu, X.; Moon, Y.T.; Fu, Y.; Morkoc, H. Effect of potential fluctuations on photoluminescence in Mg-doped GaN. Phys. Status Solidi 2005, 2, 2761–2764. [Google Scholar] [CrossRef]
- Korotkov, R.Y.; Gregie, J.M.; Wessels, B.W. Photoluminescence Studies of p-type GaN:Mg Co-doped with Oxygen. MRS Proc. 2000, 639. [Google Scholar] [CrossRef]
- Bayerl, M.W.; Brandt, M.S.; Ambacher, O.; Stutzmann, M.; Glaser, E.R.; Henry, R.L.; Wickenden, A.E.; Koleske, D.D.; Suski, T.; Grzegory, I.; et al. Optically detected magnetic resonance of the red and near-infrared luminescence in Mg-doped GaN. Phys. Rev. B 2001, 63, 125203. [Google Scholar] [CrossRef]
- Monemar, B.; Lagerstedt, O.; Gislason, H.P. Properties of Zn-doped VPE-grown GaN. I. Luminescence data in relation to doping conditions. J. Appl. Phys. 1980, 51, 625. [Google Scholar] [CrossRef]
- Kuball, M. Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control. Surf. Interface Anal. 2001, 31, 987–999. [Google Scholar] [CrossRef]
Doping Element in Metallic Gallium | Fusion Temperature (°C) | Homogenization Temperature (°C) |
---|---|---|
Zn | 440 | 460 |
Mg | 670 | 690 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gastellóu, E.; García, G.; Herrera, A.M.; Morales, C.; García, R.; Hirata, G.A.; Rosendo, E.; Luna, J.A.; Robles, M.; Rodríguez, J.A.; et al. Effects in the Optical and Structural Properties Caused by Mg or Zn Doping of GaN Films Grown via Radio-Frequency Magnetron Sputtering Using Laboratory-Prepared Targets. Appl. Sci. 2021, 11, 6990. https://doi.org/10.3390/app11156990
Gastellóu E, García G, Herrera AM, Morales C, García R, Hirata GA, Rosendo E, Luna JA, Robles M, Rodríguez JA, et al. Effects in the Optical and Structural Properties Caused by Mg or Zn Doping of GaN Films Grown via Radio-Frequency Magnetron Sputtering Using Laboratory-Prepared Targets. Applied Sciences. 2021; 11(15):6990. https://doi.org/10.3390/app11156990
Chicago/Turabian StyleGastellóu, Erick, Godofredo García, Ana María Herrera, Crisoforo Morales, Rafael García, Gustavo Alonso Hirata, Enrique Rosendo, José Alberto Luna, Mario Robles, Jorge Alberto Rodríguez, and et al. 2021. "Effects in the Optical and Structural Properties Caused by Mg or Zn Doping of GaN Films Grown via Radio-Frequency Magnetron Sputtering Using Laboratory-Prepared Targets" Applied Sciences 11, no. 15: 6990. https://doi.org/10.3390/app11156990
APA StyleGastellóu, E., García, G., Herrera, A. M., Morales, C., García, R., Hirata, G. A., Rosendo, E., Luna, J. A., Robles, M., Rodríguez, J. A., & Ramírez, Y. D. (2021). Effects in the Optical and Structural Properties Caused by Mg or Zn Doping of GaN Films Grown via Radio-Frequency Magnetron Sputtering Using Laboratory-Prepared Targets. Applied Sciences, 11(15), 6990. https://doi.org/10.3390/app11156990