Simultaneous SAXS/SANS Method at D22 of ILL: Instrument Upgrade
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Reduction of the Gamma Background by Lead Shielding

3.2. Shielding the X-ray Source against External Magnetic Fields
3.3. Overall SAXS Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SDDX-ray | Sample-to-detector distance of SAXS | 
| SDDNeutron | Sample-to-detector distance of SANS | 
| SLD | Scattering length density | 
| col | Neutron collimation | 
| diff | Difference mode of double-energy threshold X-ray detector, 4–10 KeV | 
| th1 | A single-energy threshold mode of X-ray detector, 4 KeV | 
| SD1 | Sample-to-detector distance of SAXS at 0.55 m | 
| SD2 | Sample-to-detector distance of SAXS at 1.632 m | 
| shield | Lead shielding on the SAXS system | 
| NoShield | SAXS system without any lead shielding walls | 
References
- Schmutzler, T.; Schindler, T.; Zech, T.; Lages, S.; Thoma, M.; Appavou, M.S.; Peukert, W.; Spiecker, E.; Unruh, T. n-Hexanol Enhances the Cetyltrimethylammonium Bromide Stabilization of Small Gold Nanoparticles and Promotes the Growth of Gold Nanorods. ACS Appl. Nano Mater. 2019, 2, 3206–3219. [Google Scholar] [CrossRef]
 - Schindler, T.; Lin, W.; Schmutzler, T.; Lindner, P.; Peukert, W.; Segets, D.; Unruh, T. Evolution of the Ligand Shell Around Small ZnO Nanoparticles During the Exchange of Acetate by Catechol: A Small Angle Scattering Study. ChemNanoMat 2019, 5, 116–123. [Google Scholar] [CrossRef]
 - Schmiele, M.; Busch, S.; Morhenn, H.; Schindler, T.; Schmutzler, T.; Schweins, R.; Lindner, P.; Boesecke, P.; Westermann, M.; Steiniger, F.; et al. Structural Characterization of Lecithin-Stabilized Tetracosane Lipid Nanoparticles. Part I: Emulsions. J. Phys. Chem. B 2016, 120, 5505–5512. [Google Scholar] [CrossRef]
 - Schmutzler, T.; Schindler, T.; Goetz, K.; Appavou, M.S.; Lindner, P.; Prevost, S.; Unruh, T. Concentration dependent morphology and composition of n-alcohol modified cetyltrimethylammonium bromide micelles. J. Phys. Condens. Mat. 2018, 30. [Google Scholar] [CrossRef] [PubMed]
 - Schmutzler, T.; Schindler, T.; Schmiele, M.; Appavou, M.S.; Lages, S.; Kriele, A.; Gilles, R.; Unruh, T. The influence of n-hexanol on the morphology and composition of CTAB micelles. Colloid Surface A 2018, 543, 56–63. [Google Scholar] [CrossRef]
 - Mohl, G.E.; Metwalli, E.; Bouchet, R.; Phan, T.N.T.; Cubitt, R.; Muller-Buschbaum, P. In Operando Small-Angle Neutron Scattering Study of Single-Ion Copolymer Electrolyte for Li-Metal Batteries. ACS Energy Lett. 2018, 3, 1–6. [Google Scholar] [CrossRef]
 - Mohl, G.E.; Metwalli, E.; Muller-Buschbaum, P. In Operando Small-Angle X-ray Scattering Investigation of Nanostructured Polymer Electrolyte for Lithium-Ion Batteries. ACS Energy Lett. 2018, 3, 1525–1530. [Google Scholar] [CrossRef]
 - Gehrer, S.; Schmiele, M.; Westermann, M.; Steiniger, F.; Unruh, T. Liquid Crystalline Phase Formation in Suspensions of Solid Trimyristin Nanoparticles. J. Phys. Chem. B 2014, 118, 11387–11396. [Google Scholar] [CrossRef] [PubMed]
 - Schmiele, M.; Gehrer, S.; Unruh, T. Small-angle scattering simulations for suspensions of nanocrystals. Acta Crystallogr. A 2014, 70, C597. [Google Scholar] [CrossRef] [Green Version]
 - Schuldes, I.; Noll, D.M.; Schindler, T.; Zech, T.; Gotz, K.; Appavou, M.S.; Boesecke, P.; Steiniger, F.; Schulz, P.S.; Unruh, T. Internal Structure of Nanometer-Sized Droplets Prepared by Antisolvent Precipitation. Langmuir 2019, 35, 13578–13587. [Google Scholar] [CrossRef]
 - Unruh, T. Interpretation of small-angle X-ray scattering patterns of crystalline triglyceride nanoparticles in dispersion. J. Appl. Crystallogr. 2007, 40, 1008–1018. [Google Scholar] [CrossRef]
 - Schmiele, M.; Schindler, T.; Westermann, M.; Steiniger, F.; Radulescu, A.; Kriele, A.; Gilles, R.; Unruh, T. Mesoscopic Structures of Triglyceride Nanosuspensions Studied by Small-Angle X-ray and Neutron Scattering and Computer Simulations. J. Phys. Chem. B 2014, 118, 8808–8818. [Google Scholar] [CrossRef] [PubMed]
 - Wibmer, L.; Lages, S.; Unruh, T.; Guldi, D.M. Excitons and Trions in One-Photon- and Two-Photon-Excited MoS2: A Study in Dispersions. Adv. Mater. 2018, 30. [Google Scholar] [CrossRef] [PubMed]
 - Putnam, C.D.; Hammel, M.; Hura, G.L.; Tainer, J.A. X-ray solution scattering (SAXS) combined with crystallography and computation: Defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 2007, 40, 191–285. [Google Scholar] [CrossRef] [PubMed]
 - Glatter, O.; Kratky, O. Small Angle X-ray Scattering; Academic Press: London, UK; New York, NY, USA, 1982; p. 515. [Google Scholar]
 - Serdyuk, I.N.; Tsalkova, T.N.; Svergun, D.I.; Izotova, T.D. Determination of Radii of Gyration of Particles by Small-Angle Neutron-Scattering—Calculation of the Effect of Aggregates—Appendix. J. Mol. Biol. 1987, 194, 126–128. [Google Scholar] [CrossRef]
 - Koch, M.H.J.; Vachette, P.; Svergun, D.I. Small-angle scattering: A view on the properties, structures and structural changes of biological macromolecules in solution. Q. Rev. Biophys. 2003, 36, 147–227. [Google Scholar] [CrossRef] [Green Version]
 - Schindler, T.; Walter, J.; Peukert, W.; Segets, D.; Unruh, T. In Situ Study on the Evolution of Multimodal Particle Size Distributions of ZnO Quantum Dots: Some General Rules for the Occurrence of Multimodalities. J. Phys. Chem. B 2015, 119, 15370–15380. [Google Scholar] [CrossRef]
 - Futscher, M.H.; Schultz, T.; Frisch, J.; Ralaiarisoa, M.; Metwalli, E.; Nardi, M.V.; Muller-Buschbaum, P.; Koch, N. Electronic properties of hybrid organic/inorganic semiconductor pn-junctions. J. Phys. Condens. Mat. 2019, 31. [Google Scholar] [CrossRef]
 - Wang, X.Y.; Meng, J.Q.; Wang, M.M.; Xiao, Y.; Liu, R.; Xia, Y.G.; Yao, Y.; Metwalli, E.; Zhang, Q.; Qiu, B.; et al. Facile Scalable Synthesis of TiO2/Carbon Nanohybrids with Ultrasmall TiO2 Nanoparticles Homogeneously Embedded in Carbon Matrix. ACS Appl. Mater. Inter. 2015, 7, 24247–24255. [Google Scholar] [CrossRef]
 - Wang, X.Y.; Zhao, D.; Wang, C.; Xia, Y.G.; Jiang, W.S.; Xia, S.L.; Yin, S.S.; Zuo, X.X.; Metwalli, E.; Xiao, Y.; et al. Role of Nickel Nanoparticles in High-Performance TiO2/Ni/Carbon Nanohybrid Lithium/Sodium-Ion Battery Anodes. Chem. Asian J. 2019, 14, 2169. [Google Scholar] [CrossRef] [Green Version]
 - McAulay, K.; Wang, H.; Fuentes-Caparros, A.M.; Thomson, L.; Khunti, N.; Cowieson, N.; Cui, H.G.; Seddon, A.; Adams, D.J. Isotopic Control over Self-Assembly in Supramolecular Gels. Langmuir 2020, 36, 8626–8631. [Google Scholar] [CrossRef]
 - Metwalli, E.; Gotz, K.; Lages, S.; Bar, C.; Zech, T.; Noll, D.M.; Schuldes, I.; Schindler, T.; Prihoda, A.; Lang, H.; et al. A novel experimental approach for nanostructure analysis: Simultaneous small-angle X-ray and neutron scattering. J. Appl. Crystallogr. 2020, 53, 722–733. [Google Scholar] [CrossRef]
 - Deschler-Erb, E.; Lehmann, E.H.; Pernet, L.; Vontobel, P.; Hartmann, S. The complementary use of neutrons and X-rays for the non-destructive investigation of archaeological objects from Swiss collections. Archaeometry 2004, 46, 647–661. [Google Scholar] [CrossRef]
 - Lehmann, E.H.; Mannes, D.; Kaestner, A.P.; Hovind, J.; Trtik, P.; Strobl, M. The XTRA Option at the NEUTRA Facility—More Than 10 Years of Bi-Modal Neutron and X-ray Imaging at PSI. Appl. Sci. 2021, 11, 3825. [Google Scholar] [CrossRef]
 - Robuschi, S.; Tengattini, A.; Dijkstra, J.; Fernández, I.; Lundgren, K. A closer look at corrosion of steel reinforcement bars in concrete using 3D neutron and X-ray computed tomography. Cem. Concr. Res. 2021, 144, 106439. [Google Scholar] [CrossRef]
 - Ziesche, R.F.; Arlt, T.; Finegan, D.P.; Heenan, T.M.M.; Tengattini, A.; Baum, D.; Kardjilov, N.; Markotter, H.; Manke, I.; Kockelmann, W.; et al. 4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique. Nat. Commun. 2020, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 - Khaydukov, Y.; Soltwedel, O.; Keller, T. NREX: Neutron reflectometer with X-ray option. J. Large-Scale Res. Facil. 2015, 1, A38. [Google Scholar] [CrossRef] [Green Version]
 - Mannes, D.; Schmid, F.; Frey, J.; Schmidt-Ott, K.; Lehmann, E. Combined Neutron and X-ray imaging for non-invasive investigations of cultural heritage objects. Phys. Procedia 2015, 69, 653–660. [Google Scholar] [CrossRef] [Green Version]
 - Makarova, M.V.; Kravtsov, E.A.; Proglyado, V.V.; Khaydukov, Y.; Ustinov, V.V. Structure and Magnetism of Co/Dy Superlattices. Phys. Solid State 2020, 62, 1664–1666. [Google Scholar] [CrossRef]
 - Murray, E.; Smith, A.G.; Pollitt, A.J.; Matarranz, J.; Tsekhanovich, I.; Soldner, T.; Koster, U.; Biswas, D.C. Measurement of Gamma Energy Distributions and Multiplicities Using STEFF. Nucl. Data Sheets 2014, 119, 217–220. [Google Scholar] [CrossRef]
 - Dewhurst, C. GRASP. Available online: https://www.ill.eu/users/support-labs-infrastructure/software-scientific-tools/grasp (accessed on 15 March 2021).
 - Bressler, I.; Kohlbrecher, J.; Thunemann, A.F. SASfit: A tool for small-angle scattering data analysis using a library of analytical expressions. J. Appl. Crystallogr. 2015, 48, 1587–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 




| SDDX-ray (m)  | Neutron Collimation Length (m)  | X-ray Energy Mode (keV)  | Shielding Suppression Factor | Detector Suppression Factor | Total Suppression Factor | 
|---|---|---|---|---|---|
| 0.55 | 2.8 | 4 | 87 | - | 87 | 
| 4–10 | 89 | 5.5 | 505 | ||
| 17.6 | 4 | 58 | - | 58 | |
| 4–10 | 54 | 5.0 | 275 | ||
| 1.64 | 2.8 | 4 | 50 | - | 50 | 
| 4–10 | 49 | 5.1 | 248 | ||
| 17.6 | 4 | 17 | - | 17 | |
| 4–10 | 19 | 6.1 | 116 | 
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.  | 
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metwalli, E.; Götz, K.; Zech, T.; Bär, C.; Schuldes, I.; Martel, A.; Porcar, L.; Unruh, T. Simultaneous SAXS/SANS Method at D22 of ILL: Instrument Upgrade. Appl. Sci. 2021, 11, 5925. https://doi.org/10.3390/app11135925
Metwalli E, Götz K, Zech T, Bär C, Schuldes I, Martel A, Porcar L, Unruh T. Simultaneous SAXS/SANS Method at D22 of ILL: Instrument Upgrade. Applied Sciences. 2021; 11(13):5925. https://doi.org/10.3390/app11135925
Chicago/Turabian StyleMetwalli, Ezzeldin, Klaus Götz, Tobias Zech, Christian Bär, Isabel Schuldes, Anne Martel, Lionel Porcar, and Tobias Unruh. 2021. "Simultaneous SAXS/SANS Method at D22 of ILL: Instrument Upgrade" Applied Sciences 11, no. 13: 5925. https://doi.org/10.3390/app11135925
APA StyleMetwalli, E., Götz, K., Zech, T., Bär, C., Schuldes, I., Martel, A., Porcar, L., & Unruh, T. (2021). Simultaneous SAXS/SANS Method at D22 of ILL: Instrument Upgrade. Applied Sciences, 11(13), 5925. https://doi.org/10.3390/app11135925
        
                                                
