Piezoresistive Characteristics of Nanocarbon Composite Strain Sensor by Its Longitudinal Pattern Design
Abstract
:1. Introduction
2. Experimental Program
2.1. NCSS Fabrication Process
2.2. Test Setup
3. Results
3.1. Percolation Threshold and Sensor Sensitivity Characteristics
3.2. Length and Sensitivity Correlation Based on Piezoresistive Effect
3.3. Improvement of Piezoresistive Characteristics by Using Sensor Pattern
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salvado, R.; Lopes, C.; Araujo, P.; Gorski, M.; Velez, F.J.; Gomez, J.C.; Krzywon, R. Carbon fiber epoxy composites for both strengthening and health monitoring of structures. Sensors 2015, 15, 10753–10770. [Google Scholar] [CrossRef] [Green Version]
- Arash, B.; Park, H.S.; Rabczuk, T. Mechanical properties of carbon nanotube reinforced polymer nanocomposites: A coarse-grained model. Compos. B. Eng. 2015, 80, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Cho, B.G.; Hwang, S.H.; Park, Y.B. Fabrication and characterization of carbon nanotube/carbon fiber/polycarbonate multiscale hybrid composites. Compos. Res. 2016, 29, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Kang, I.; Schulz, M.J.; Kim, J.H.; Shanov, V.; Shi, D. A carbon nanotube strain sensor for structural health monitoring. Smart Mater. Struct. 2006, 15, 737–748. [Google Scholar] [CrossRef]
- Loyola, B.R.; Saponara, V.L.; Loh, K.J. In situ strain monitoring of fiber-reinforced polymers using embedded piezoresistive nanocomposites. J. Mater. Sci. 2010, 45, 6786–6798. [Google Scholar] [CrossRef] [Green Version]
- Hu, N.; Itoi, T.; Akagi, T.; Kojima, T.; Xue, J.; Yan, C.; Atobe, S.; Fukunaga, H.; Yuan, W.; Ning, H.; et al. Alamusi Ultrasensitive strain sensors made from metal-coated carbon nanofiller/epoxy composites. Carbon 2013, 51, 202–212. [Google Scholar] [CrossRef] [Green Version]
- Dinh, N.T.; Kanoun, O. Temperature-compensated force/pressure sensor based on multi-walled carbon nanotube epoxy composites. Carbon 2015, 15, 11133–11150. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.; Mendez, S.L. Piezoresistive response of spray-printed carbon nanotube/poly(vinylidene fluoride) composites. Compos. B. Eng. 2016, 96, 242–247. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kang, I. A study on the development of a novel pressure sensor based on nano carbon piezoresistive composite by using 3D printing. Trans. Korean Soc. Mech. Eng. A 2017, 41, 187–192. [Google Scholar]
- Kim, S.Y.; Park, S.H.; Choi, B.G.; Kang, I.; Park, S.W.; Shin, J.W.; Kim, J.H.; Baek, W.K.; Lim, K.T.; Kim, Y.; et al. Development of a spoke type torque sensor using painting carbon nanotube strain sensors. J. Nanosci. Nanotechnol. 2018, 18, 1782–1786. [Google Scholar] [CrossRef]
- Le, T.H.; Lee, D.H.; Kim, J.H.; Park, S.J. Polypyrrole/graphene quantum dot composites as a sensor media for epinephrine. J. Nanosci. Nanotechnol. 2020, 20, 4005–4010. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.; Lee, J.W.; Cha, J.Y.; Kim, Y.; Choi, Y.; Schulz, M.J.; Moon, C.K.; Lim, K.T.; Kim, S.Y.; Kang, I. A Spray-On Carbon Nanotube Artificial Neuron Strain Sensor for Composite Structural Health Monitoring. Sensors 2016, 16, 1171. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Choi, B.G.; Baek, W.K.; Park, S.H.; Park, S.W.; Shin, J.W.; Kang, I. Impact paint sensor based on polymer/multi-dimension carbon nano isotopes composites. Smart Mater. Struct. 2019, 28, 035025. [Google Scholar] [CrossRef]
- Hu, N.; Karube, Y.; Yan, C.; Masuda, Z.; Fukunaga, H. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 2008, 56, 2929–2936. [Google Scholar] [CrossRef] [Green Version]
- Ram, R.; Rahaman, M.; Khastgir, D. Electrical properties of polyvinylidene fluoride (PVDF)/multi-walled carbon nanotube (MWCNT) semi-transparent composites: Modelling of DC conductivity. Compos. Part A Appl. Sci. Manuf. 2015, 69, 30–39. [Google Scholar] [CrossRef]
- Bonavolonta, C.; Camerlingo, C.; Carotenuto, G.; Nicola, S.; Longo, A.; Meola, C.; Boccardi, S.; Palomba, M.; Pepe, G.P.; Valentino, M. Characterization of piezoresistive properties of graphene-supported polymer coating for strain sensor application. Sens. Actuator A Phys. 2016, 252, 26–34. [Google Scholar] [CrossRef]
- Liu, R.; Xu, Z.; Yin, J.; Huang, J.; Liu, D.; Xie, G. A coupled mechanical and electrical model concerning piezoresistve effect of CFRP materials. Compos. B. Eng. 2016, 96, 125–135. [Google Scholar] [CrossRef]
- Hu, N.; Karube, Y.; Arai, M.; Watanabe, T.; Yan, C.; Li, Y.; Liu, Y.; Fukunaga, H. Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 2010, 48, 680–687. [Google Scholar] [CrossRef]
- Rahman, R.; Soltanian, S.; Servati, P. Coupled effects of film thickness and filler length on conductivity and strain sensitivity of carbon nanotube/polymer composite thin film. IEEE Sens. J. 2016, 16, 77–87. [Google Scholar] [CrossRef]
- Micaela, C.; Massimo, R.; Imran, S.M.; Alberto, T. Conductivity in carbon nanotube polymer composites: A comparison between model and experiment. Compos. Part A Appl. Sci. Manuf. 2016, 87, 237–242. [Google Scholar]
- Lee, B.M.; Loh, K.J. Carbon nanotube thin film strain sensors: Comparison between experimental tests and numerical simulations. Nanotechnology 2017, 28, 155502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.; Hong, H.P.; Lee, C.J.; Park, C.W.; Min, N.K. Microfabrication and characterization of spray-coated single-wall carbon nanotube film strain gauges. Nanotechnology 2011, 22, 455301. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, S.; Hsu, C.; Chao, R.; Vu, T.K. Design and fabrication of single-walled carbon nanonet flexible strain sensors. Sensors 2012, 12, 3269–3280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Sparkman, J.; Gou, J. Strain sensing of printed carbon nanotube sensors on polyurethane substrate with spray deposition modeling. Compos. Commun. 2017, 3, 1–6. [Google Scholar] [CrossRef]
- Kong, J.H.; Jang, N.S.; Kim, S.H.; Kim, J.M. Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon 2014, 77, 199–207. [Google Scholar] [CrossRef]
- Li, X.; Levy, C.; Elaadil, L. Multiwalled carbon nanotube film for strain sensing. Nanotechnology 2008, 19, 045501. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Allen, M.G. Deformable strain sensors based on patterned MWCNTs/polydimethylsiloxane composites. J. Polym. Sci. B. Polym. Phys. 2013, 51, 1505–1512. [Google Scholar] [CrossRef]
- Chun, K.Y.; Oh, Y.; Rho, J.; Ahn, J.H.; Kim, Y.J.; Choi, H.R.; Baik, S. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 2010, 5, 853–857. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, S.; Dong, X.; Lin, Y.; Liu, L. Flexible piezoresistive sensor based on “dynamic bridging effect” of silver nanowired toward graphene. Carbon 2017, 113, 395–403. [Google Scholar] [CrossRef]
- Pei, Z.; Liu, Y.; Zhang, Q.; Zhao, D.; Wang, J.; Yuan, Z.; Zhang, W.; Sang, S. Highly sensitive, stretchable strain sensor based on Ag@COOH- functionalized CNTs for stroke and pronunciation recognition. Adv. Electron. Mater. 2019, 5, 1900227. [Google Scholar] [CrossRef]
- Esmaeli, A.; Sbarufatti, C.; Casati, R.; Jiménez-Suárez, A.; Ureña, A.; Hamouda, A.M.S. Effective addition of nanoclay in enhancement of mechanical and electromechanical properties of SWCNT reinforced epoxy: Strain sensing and crack-induced piezoresistivity. Theor. Appl. Fract. Mech. 2020, 110, 102831. [Google Scholar] [CrossRef]
- Hoffmann, K. An Introduction to Stress Analysis and Transducer Design using Strain Gauges. HBM 2012, 34–41. [Google Scholar]
Sensor | 0.35 wt.% | 0.5 wt.% | ||||
---|---|---|---|---|---|---|
T = 1.2, W = 10 (mm) | L = 30 | L = 40 | L = 50 | L= 30 | L = 40 | L = 50 |
Sample 1 (kΩ) | 9.47 | 11.37 | 14.33 | 1.53 | 1.87 | 2.33 |
Sample 2 (kΩ) | 8.63 | 10.89 | 14.10 | 1.44 | 1.87 | 2.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-Y.; Choi, B.-G.; Oh, G.-W.; Kim, C.-J.; Jung, Y.-S.; Jang, J.-S.; Joung, K.-Y.; Suh, J.-H.; Kang, I. Piezoresistive Characteristics of Nanocarbon Composite Strain Sensor by Its Longitudinal Pattern Design. Appl. Sci. 2021, 11, 5760. https://doi.org/10.3390/app11135760
Kim S-Y, Choi B-G, Oh G-W, Kim C-J, Jung Y-S, Jang J-S, Joung K-Y, Suh J-H, Kang I. Piezoresistive Characteristics of Nanocarbon Composite Strain Sensor by Its Longitudinal Pattern Design. Applied Sciences. 2021; 11(13):5760. https://doi.org/10.3390/app11135760
Chicago/Turabian StyleKim, Sung-Yong, Baek-Gyu Choi, Gwang-Won Oh, Chan-Jung Kim, Young-Seok Jung, Jin-Seok Jang, Kwan-Young Joung, Jun-Ho Suh, and Inpil Kang. 2021. "Piezoresistive Characteristics of Nanocarbon Composite Strain Sensor by Its Longitudinal Pattern Design" Applied Sciences 11, no. 13: 5760. https://doi.org/10.3390/app11135760
APA StyleKim, S.-Y., Choi, B.-G., Oh, G.-W., Kim, C.-J., Jung, Y.-S., Jang, J.-S., Joung, K.-Y., Suh, J.-H., & Kang, I. (2021). Piezoresistive Characteristics of Nanocarbon Composite Strain Sensor by Its Longitudinal Pattern Design. Applied Sciences, 11(13), 5760. https://doi.org/10.3390/app11135760