Structure-Property Relation of Trimethyl Ammonium Ionic Liquids for Battery Applications
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of the Ionic Liquids
2.2. Thermal Transitions
2.3. Density
2.4. Viscosity
2.5. Conductivity
2.6. Self-Diffusion Coefficients
2.7. Fitting of the Transport Properties
2.8. Electrochemistry
2.9. IR Spectroscopy
3. Results and Discussion
3.1. Molecular Structure, Thermal Properties and Density
3.2. Viscosity
3.3. Conductivity
3.4. Self-Diffusion Coefficients
3.5. Linear Sweep Voltammetry and Application in Li-ion Based Half-Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Welton, T. Ionic liquids: A brief history. Biophys. Rev. 2018, 10, 691–706. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Savoy, A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq. 2020, 297, 112038. [Google Scholar] [CrossRef]
- Watanabe, M.; Thomas, M.L.; Zhang, S.; Ueno, K.; Yasuda, T.; Dokko, K. Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chem. Rev. 2017, 117, 7190–7239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Wu, F.; Mariani, A.; Passerini, S. Concentrated Ionic-Liquid-Based Electrolytes for High-Voltage Lithium Batteries with Improved Performance at Room Temperature. ChemSusChem 2019, 12, 4185–4193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Zhang, Z.; Sun, X.-G.; Hu, Y.-S.; Xing, H.; Dai, S. Ionic liquids and derived materials for lithium and sodium batteries. Chem. Soc. Rev. 2018, 47, 2020–2064. [Google Scholar] [CrossRef]
- Navarra, M.A. Ionic liquids as safe electrolyte components for Li-metal and Li-ion batteries. MRS Bull. 2013, 38, 548–553. [Google Scholar] [CrossRef]
- Hofmann, A.; Schulz, M.; Indris, S.; Heinzmann, R.; Hanemann, T. Mixtures of Ionic Liquid and Sulfolane as Electrolytes for Li-Ion Batteries. Electrochim. Acta 2014, 147, 704–711. [Google Scholar] [CrossRef]
- Tsurumaki, A.; Agostini, M.; Poiana, R.; Lombardo, L.; Lufrano, E.; Simari, C.; Matic, A.; Nicotera, I.; Panero, S.; Navarra, M.A. Enhanced safety and galvanostatic performance of high voltage lithium batteries by using ionic liquids. Electrochim. Acta 2019, 316, 1–7. [Google Scholar] [CrossRef]
- Wilken, S.; Xiong, S.; Scheers, J.; Jacobsson, P.; Johansson, P. Ionic liquids in lithium battery electrolytes: Composition versus safety and physical properties. J. Power Sources 2015, 275, 935–942. [Google Scholar] [CrossRef]
- Osada, I.; De Vries, H.; Scrosati, B.; Passerini, S. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications. Angew. Chem. Int. Ed. 2016, 55, 500–513. [Google Scholar] [CrossRef]
- Sano, H.; Kitta, M.; Shikano, M.; Matsumoto, H. Effect of Temperature on Li Electrodeposition Behavior in Room-Temperature Ionic Liquids Comprising Quaternary Ammonium Cation. J. Electrochem. Soc. 2019, 166, A2973–A2979. [Google Scholar] [CrossRef]
- Ruether, T.; Bhatt, A.I.; Best, A.S.; Harris, K.R.; Hollenkamp, A.F. Electrolytes for Lithium (Sodium) Batteries Based on Ionic Liquids: Highlighting the Key Role Played by the Anion. Batter. Supercaps 2020, 3, 793–827. [Google Scholar] [CrossRef]
- Jeong, S.; Li, S.; Appetecchi, G.B.; Passerini, S. Asymmetric ammonium-based ionic liquids as electrolyte components for safer, high-energy, electrochemical storage devices. Energy Storage Mater. 2019, 18, 1–9. [Google Scholar] [CrossRef]
- Shkrob, I.A.; Marin, T.W.; Zhu, Y.; Abraham, D.P. Why Bis(fluorosulfonyl)imide Is a “Magic Anion” for Electrochemistry. J. Phys. Chem. C 2014, 118, 19661–19671. [Google Scholar] [CrossRef]
- Hayamizu, K.; Tsuzuki, S.; Seki, S. Transport and Electrochemical Properties of Three Quaternary Ammonium Ionic Liquids and Lithium Salts Doping Effects Studied by NMR Spectroscopy. J. Chem. Eng. Data 2014, 59, 1944–1954. [Google Scholar] [CrossRef]
- Balducci, A. Ionic Liquids in Lithium-Ion Batteries. Top. Curr. Chem. 2017, 375, 20. [Google Scholar] [CrossRef]
- Xiao, J. How lithium dendrites form in liquid batteries. Science 2019, 366, 426–427. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.N.; Zhang, Y.; Zhang, J.-G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537. [Google Scholar] [CrossRef]
- Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117, 10403–10473. [Google Scholar] [CrossRef]
- Liu, K.; Wang, Z.; Shi, L.; Jungsuttiwong, S.; Yuan, S. Ionic liquids for high performance lithium metal batteries. J. Energy Chem. 2021, 59, 320–333. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, J.-G.; Xu, W. Advancing Lithium Metal Batteries. Joule 2018, 2, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Tikekar, M.D.; Choudhury, S.; Tu, Z.; Archer, L.A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114. [Google Scholar] [CrossRef]
- Hu, M.; Pang, X.; Zhou, Z. Recent progress in high-voltage lithium ion batteries. J. Power Sources 2013, 237, 229–242. [Google Scholar] [CrossRef]
- Xu, W.; Cooper, E.I.; Angell, C.A. Ionic Liquids: Ion Mobilities, Glass Temperatures, and Fragilities. J. Phys. Chem. B 2003, 107, 6170–6178. [Google Scholar] [CrossRef]
- Wang, X.; Chi, Y.; Mu, T. A review on the transport properties of ionic liquids. J. Mol. Liq. 2014, 193, 262–266. [Google Scholar] [CrossRef]
- Harris, K.R.; Kanakubo, M. Self-Diffusion Coefficients and Related Transport Properties for a Number of Fragile Ionic Liquids. J. Chem. Eng. Data 2016, 61, 2399–2411. [Google Scholar] [CrossRef]
- Sippel, P.; Lunkenheimer, P.; Krohns, S.; Thoms, E.; Loidl, A. Importance of liquid fragility for energy applications of ionic liquids. Sci. Rep. 2015, 5, 13922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, S.M.; Ries, M.E.; Moffat, J.; Budtova, T. NMR and Rheological Study of Anion Size Influence on the Properties of Two Imidazolium-based Ionic Liquids. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvar, N.; Domínguez, Á. Thermal Behaviour of Pure Ionic Liquids. In Ionic Liquids Current State of the Art; IntechOpen: London, UK, 2015; pp. 199–208. [Google Scholar]
- Girard, G.M.A.; Hilder, M.; Zhu, H.; Nucciarone, D.; Whitbread, K.; Zavorine, S.; Moser, M.; Forsyth, M.; MacFarlane, D.R.; Howlett, P.C. Electrochemical and physicochemical properties of small phosphonium cation ionic liquid electrolytes with high lithium salt content. Phys. Chem. Chem. Phys. 2015, 17, 8706–8713. [Google Scholar] [CrossRef]
- Le, M.L.P.; Tran, N.A.; Ngo, H.P.K.; Nguyen, T.G.; Tran, V.M. Liquid Electrolytes Based on Ionic Liquids for Lithium-Ion Batteries. J. Solut. Chem. 2015, 44, 2332–2343. [Google Scholar] [CrossRef]
- Galiński, M.; Lewandowski, A.; Stępniak, I. Ionic liquids as electrolytes. Electrochimica Acta 2006, 51, 5567–5580. [Google Scholar] [CrossRef]
- Sangoro, J.R.; Kremer, F. Charge Transport and Glassy Dynamics in Ionic Liquids. Accounts Chem. Res. 2012, 45, 525–532. [Google Scholar] [CrossRef]
- Armel, V.; Velayutham, D.; Sun, J.; Howlett, P.C.; Forsyth, M.; Macfarlane, D.R.; Pringle, J.M. Ionic liquids and organic ionic plastic crystals utilizing small phosphonium cations. J. Mater. Chem. 2011, 21, 7640–7650. [Google Scholar] [CrossRef] [Green Version]
- Yunis, R.; Al-Masri, D.; Hollenkamp, A.F.; Doherty, C.M.; Zhu, H.; Pringle, J.M. Plastic Crystals Utilising Small Ammonium Cations and Sulfonylimide Anions as Electrolytes for Lithium Batteries. J. Electrochem. Soc. 2020, 167, 070529. [Google Scholar] [CrossRef]
- Philippi, F.; Rauber, D.; Zapp, J.; Präsang, C.; Scheschkewitz, D.; Hempelmann, R. Multiple Ether-Functionalized Phosphonium Ionic Liquids as Highly Fluid Electrolytes. ChemPhysChem 2019, 20, 443–455. [Google Scholar] [CrossRef]
- Philippi, F.; Rauber, D.; Kuttich, B.; Kraus, T.; Kay, C.W.M.; Hempelmann, R.; Hunt, P.A.; Welton, T. Ether functionalisation, ion conformation and the optimisation of macroscopic properties in ionic liquids. Phys. Chem. Chem. Phys. 2020, 22, 23038–23056. [Google Scholar] [CrossRef]
- Martinelli, A.; Matic, A.; Jacobsson, P.; Börjesson, L.; Fernicola, A.; Scrosati, B. Phase Behavior and Ionic Conductivity in Lithium Bis(trifluoromethanesulfonyl)imide-Doped Ionic Liquids of the Pyrrolidinium Cation and Bis(trifluoromethanesulfonyl)imide Anion. J. Phys. Chem. B 2009, 113, 11247–11251. [Google Scholar] [CrossRef] [PubMed]
- Bayley, P.M.; Best, A.S.; Macfarlane, D.R.; Forsyth, M. Transport Properties and Phase Behaviour in Binary and Ternary Ionic Liquid Electrolyte Systems of Interest in Lithium Batteries. ChemPhysChem 2011, 12, 823–827. [Google Scholar] [CrossRef] [PubMed]
- Kerner, M.; Plylahan, N.; Scheers, J.; Johansson, P. Ionic liquid based lithium battery electrolytes: Fundamental benefits of utilising both TFSI and FSI anions? Phys. Chem. Chem. Phys. 2015, 17, 19569–19581. [Google Scholar] [CrossRef]
- Angell, C. Perspective on the glass transition. J. Phys. Chem. Solids 1988, 49, 863–871. [Google Scholar] [CrossRef]
- Araque, J.C.; Hettige, J.J.; Margulis, C.J. Modern Room Temperature Ionic Liquids, a Simple Guide to Understanding Their Structure and How It May Relate to Dynamics. J. Phys. Chem. B 2015, 119, 12727–12740. [Google Scholar] [CrossRef] [PubMed]
- Tsuzuki, S.; Hayamizu, K.; Seki, S. Origin of the Low-Viscosity of [emim][(FSO2)2N] Ionic Liquid and Its Lithium Salt Mixture: Experimental and Theoretical Study of Self-Diffusion Coefficients, Conductivities, and Intermolecular Interactions. J. Phys. Chem. B 2010, 114, 16329–16336. [Google Scholar] [CrossRef]
- Triolo, A.; Russina, O.; Caminiti, R.; Shirota, H.; Lee, H.Y.; Santos, C.S.; Murthy, N.S.; Castner, J.E.W. Comparing intermediate range order for alkyl- vs. ether-substituted cations in ionic liquids. Chem. Commun. 2012, 48, 4959–4961. [Google Scholar] [CrossRef]
- Russina, O.; Triolo, A.; Gontrani, L.; Caminiti, R.; Xiao, D.; Jr, L.G.H.; A Bartsch, R.; Quitevis, E.L.; Pleckhova, N.; Seddon, K.R. Morphology and intermolecular dynamics of 1-alkyl-3-methylimidazolium bis{(trifluoromethane)sulfonyl}amide ionic liquids: Structural and dynamic evidence of nanoscale segregation. J. Physics Condens. Matter 2009, 21, 424121. [Google Scholar] [CrossRef]
- Shimizu, K.; Bernardes, C.E.S.; Triolo, A.; Lopes, J.N.C. Nano-segregation in ionic liquids: Scorpions and vanishing chains. Phys. Chem. Chem. Phys. 2013, 15, 16256–16262. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Huo, Y.; Cao, J.; Xu, L.; Zhang, S. Physicochemical Properties of Ether-Functionalized Ionic Liquids: Understanding Their Irregular Variations with the Ether Chain Length. Ind. Eng. Chem. Res. 2016, 55, 11589–11596. [Google Scholar] [CrossRef]
- Hayamizu, K.; Tsuzuki, S.; Seki, S.; Ohno, Y.; Miyashiro, H.; Kobayashi, Y. Quaternary Ammonium Room-Temperature Ionic Liquid Including an Oxygen Atom in Side Chain/Lithium Salt Binary Electrolytes: Ionic Conductivity and1H,7Li, and19F NMR Studies on Diffusion Coefficients and Local Motions. J. Phys. Chem. B 2008, 112, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, F.; Famulari, A.; Raos, G.; Meille, S.V.; Mele, A.; Appetecchi, G.B.; Passerini, S. Pyrrolidinium-Based Ionic Liquids Doped with Lithium Salts: How Does Li+ Coordination Affect Its Diffusivity? J. Phys. Chem. B 2014, 118, 13679–13688. [Google Scholar] [CrossRef]
- Schreiner, C.; Zugmann, S.; Hartl, R.; Gores, H.J. Temperature Dependence of Viscosity and Specific Conductivity of Fluoroborate-Based Ionic Liquids in Light of the Fractional Walden Rule and Angell’s Fragility Concept†. J. Chem. Eng. Data 2010, 55, 4372–4377. [Google Scholar] [CrossRef]
- Rüther, T.; Kanakubo, M.; Best, A.S.; Harris, K.R. The importance of transport property studies for battery electrolytes: Revisiting the transport properties of lithium–N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide mixtures. Phys. Chem. Chem. Phys. 2017, 19, 10527–10542. [Google Scholar] [CrossRef]
- Harris, K.R. On the Use of the Angell–Walden Equation To Determine the “Ionicity” of Molten Salts and Ionic Liquids. J. Phys. Chem. B 2019, 123, 7014–7023. [Google Scholar] [CrossRef]
- Giffin, G.A.; Moretti, A.; Jeong, S.; Pilar, K.; Brinkkötter, M.; Greenbaum, S.G.; Schönhoff, M.; Passerini, S.; Brinkkoetter, M.; Greenbaum, S.; et al. Connection between Lithium Coordination and Lithium Diffusion in [Pyr 12O1 ][FTFSI] Ionic Liquid Electrolytes. ChemSusChem 2018, 11, 1981–1989. [Google Scholar] [CrossRef]
- Shimizu, M.; Yamaguchi, K.; Usui, H.; Ieuji, N.; Yamashita, T.; Komura, T.; Domi, Y.; Nokami, T.; Itoh, T.; Sakaguchi, H. Piperidinium-Based Ionic Liquids as an Electrolyte Solvent for Li-Ion Batteries: Effect of Number and Position of Oxygen Atom in Cation Side Chain on Electrolyte Property. J. Electrochem. Soc. 2020, 167, 070516. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Yonezawa, T.; Koda, S. Study on the temperature-dependent coupling among viscosity, conductivity and structural relaxation of ionic liquids. Phys. Chem. Chem. Phys. 2015, 17, 19126–19133. [Google Scholar] [CrossRef] [PubMed]
- Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M.A.B.H.; Watanabe, M. Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in Imidazolium Cation. J. Phys. Chem. B 2005, 109, 6103–6110. [Google Scholar] [CrossRef]
- Hayamizu, K.; Tsuzuki, S.; Seki, S.; Fujii, K.; Suenaga, M.; Umebayashi, Y. Studies on the translational and rotational motions of ionic liquids composed of N-methyl-N-propyl-pyrrolidinium (P13) cation and bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide anions and their binary systems including lithium salts. J. Chem. Phys. 2010, 133, 194505. [Google Scholar] [CrossRef]
- Schmidt, J.R.; Skinner, J.L. Hydrodynamic boundary conditions, the Stokes–Einstein law, and long-time tails in the Brownian limit. J. Chem. Phys. 2003, 119, 8062–8068. [Google Scholar] [CrossRef]
- Nordness, O.; Brennecke, J.F. Ion Dissociation in Ionic Liquids and Ionic Liquid Solutions. Chem. Rev. 2020, 120, 12873–12902. [Google Scholar] [CrossRef]
- Harris, K.R. Relations between the Fractional Stokes−Einstein and Nernst−Einstein Equations and Velocity Correlation Coefficients in Ionic Liquids and Molten Salts. J. Phys. Chem. B 2010, 114, 9572–9577. [Google Scholar] [CrossRef]
- Ueno, K.; Tokuda, H.; Watanabe, M. Ionicity in ionic liquids: Correlation with ionic structure and physicochemical properties. Phys. Chem. Chem. Phys. 2010, 12, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Wu, S.; Von Solms, N.; Liang, X.; Huo, F.; Zhou, Q.; He, H.; Zhang, S. The Effect of Concentration of Lithium Salt on the Structural and Transport Properties of Ionic Liquid-Based Electrolytes. Front. Chem. 2020, 7, 1–10. [Google Scholar] [CrossRef]
- Figueiredo, P.H.; Siqueira, L.; Ribeiro, M.C.C. The Equilibrium Structure of Lithium Salt Solutions in Ether-Functionalized Ammonium Ionic Liquids. J. Phys. Chem. B 2012, 116, 12319–12324. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Smith, G.D.; Bedrov, D. Li+ Solvation and Transport Properties in Ionic Liquid/Lithium Salt Mixtures: A Molecular Dynamics Simulation Study. J. Phys. Chem. B 2012, 116, 12801–12809. [Google Scholar] [CrossRef] [PubMed]
- Brinkkötter, M.; Mariani, A.; Jeong, S.; Passerini, S.; Schönhoff, M. Ionic Liquid in Li Salt Electrolyte: Modifying the Li + Transport Mechanism by Coordination to an Asymmetric Anion. Adv. Energy Sustain. Res. 2021, 2, 2000078. [Google Scholar] [CrossRef]
- Philippi, F.; Quinten, A.; Rauber, D.; Springborg, M.; Hempelmann, R. Density Functional Theory Descriptors for Ionic Liquids and the Introduction of a Coulomb Correction. J. Phys. Chem. A 2019, 123, 4188–4200. [Google Scholar] [CrossRef]
- Feng, G.; Chen, M.; Bi, S.; Goodwin, Z.A.H.; Postnikov, E.B.; Brilliantov, N.; Urbakh, M.; Kornyshev, A.A. Free and Bound States of Ions in Ionic Liquids, Conductivity, and Underscreening Paradox. Phys. Rev. X 2019, 9, 021024. [Google Scholar] [CrossRef] [Green Version]
- Lassègues, J.-C.; Grondin, J.; Aupetit, C.; Johansson, P. Spectroscopic Identification of the Lithium Ion Transporting Species in LiTFSI-Doped Ionic Liquids. J. Phys. Chem. A 2009, 113, 305–314. [Google Scholar] [CrossRef]
- Hofmann, A.; Werth, F.; Höweling, A.; Hanemann, T. Investigation of the Oxidative Stability of Li-Ion Battery Electrolytes Using Cathode Materials. ECS Electrochem. Lett. 2015, 4, A141–A144. [Google Scholar] [CrossRef]
Ionic Liquid | /mol·dm−3 | ||||||
---|---|---|---|---|---|---|---|
[N1114][TFSI] | - | −30 | - | - | −103 [a]; −100 [b]; −38 [b] 9 [b] | 18 | 1.3919 |
[N1114][TFSI] | 0.25 | - | −78 | −25 | - | 9 | 1.4173 |
[N1114][TFSI] | 1.5 | - | −48 | −15 | - | 19 | 1.5268 |
[N111(2O1)][TFSI] | - | −17 | - | - | - | 38 | −[c] |
[N111(2O1)][TFSI] | 0.25 | −36 | - | - | - | 36 | −[c] |
[N111(2O1)][TFSI] | 1.5 | - | −56 | - | - | - | 1.5725 |
[N1114][FSI] | - | −18 | - | - | −34 [a]; −35 [b] 9 [b] | 22 | 1.3028 |
[N1114][FSI] | 0.25 | −30 | - | - | −32 [a]; −28 [b]; 8 [b] | 15 | 1.3186 |
[N111(2O1)][FSI] | - | 12 | - | - | - | 34 | −[c] |
[N111(2O1)][FSI] | 0.25 | −18 | - | - | −33 [a]; −28 [b] 9 [b] | 18 | 1.3914 |
[N1115][TFSI] | - | −17 | - | - | −2 [b]; 19 [b] | 29 | 1.3638 |
[N1115][TFSI] | 0.25 | - | −72 | −48 | −8 [b]; 8 [b] | 17 | 1.3854 |
[N111(2O2)][TFSI] | - | - | −83 | −66 | −55 [b] | 0 | 1.4141 |
[N111(2O2)][TFSI] | 0.25 | - | −79 | −18 | - | −3 | 1.4341 |
Ionic Liquid | /mol·dm−3 | ||||||
---|---|---|---|---|---|---|---|
[N1114][TFSI] | - | 99.2 | 1.772 | 784.9 | 174.1 | 4.51 | 32.9 |
[N1114][TFSI] | 0.25 | 147.3 | 2.073 | 760.4 | 182.3 | 4.17 | 36.0 |
[N1114][TFSI] | 1.5 | 1933 | 1.229 | 979.4 | 196.8 | 4.98 | 58.6 |
[N111(2O1)][TFSI] | - | 59.6 | 2.805 | 632.7 | 180.1 | 3.51 | 29.0 |
[N111(2O1)][TFSI] | 0.25 | 87.7 | 2.138 | 746.5 | 174.1 | 4.29 | 31.3 |
[N111(2O1)][TFSI] | 1.5 | 833.9 | 1.675 | 926.5 | 189.3 | 4.89 | 48.9 |
[N1114][FSI] | - | 55.1 | 2.053 | 835.4 | 148.8 | 5.61 | 25.1 |
[N1114][FSI] | 0.25 | 62.0 | 2.183 | 819.7 | 153.1 | 5.35 | 25.9 |
[N111(2O1)][FSI] | - | 38.9 | 1.996 | 800.9 | 146.3 | 5.47 | 23.3 |
[N111(2O1)][FSI] | 0.25 | 45.5 | 4.502 | 550.0 | 178.8 | 3.08 | 24.7 |
[N1115][TFSI] | - | 136.9 | 1.650 | 806.0 | 178.2 | 4.52 | 35.9 |
[N1115][TFSI] | 0.25 | 174.8 | 1.710 | 831.0 | 178.3 | 4.66 | 37.0 |
[N111(2O2)][TFSI] | - | 57.8 | 2.116 | 731.9 | 167.7 | 4.36 | 28.1 |
[N111(2O2)][TFSI] | 0.25 | 84.3 | 2.124 | 745.4 | 173.6 | 4.29 | 31.0 |
Ionic Liquid | |||||||
---|---|---|---|---|---|---|---|
[N1114][TFSI] | - | 0.567 | 197.2 | −719.5 | 175.3 | 4.10 | 30.6 |
[N1114][TFSI] | 0.25 | 0.377 | 234.5 | −793.8 | 174.7 | 4.54 | 33.6 |
[N1114][TFSI] | 1.5 | 0.025 | 199.2 | −886.2 | 199.7 | 4.44 | 55.6 |
[N111(2O1)][TFSI] | - | 0.874 | 203.4 | −728.9 | 164.3 | 4.43 | 26.6 |
[N111(2O1)][TFSI] | 0.25 | 0.623 | 173.6 | −711.1 | 171.8 | 4.14 | 28.8 |
[N111(2O1)][TFSI] | 1.5 | 0.067 | 192.3 | −894.1 | 185.8 | 4.81 | 44.6 |
[N1114][FSI] | - | 1.292 | 228.9 | −786.3 | 146.3 | 5.37 | 22.9 |
[N1114][FSI] | 0.25 | 1.105 | 175.7 | −713.8 | 157.3 | 4.54 | 23.8 |
[N111(2O1)][FSI] | - | 1.393 | 157.2 | −675.0 | 155.3 | 4.35 | 22.0 |
[N111(2O1)][FSI] | 0.25 | 1.240 | 177.9 | −734.6 | 150.2 | 4.89 | 22.4 |
[N1115][TFSI] | - | 0.409 | 177.1 | −712.4 | 180.8 | 3.94 | 32.9 |
[N1115][TFSI] | 0.25 | 0.277 | 199.3 | −769.7 | 181.1 | 4.25 | 35.8 |
[N111(2O2)][TFSI] | - | 0.849 | 189.4 | −713.4 | 166.1 | 4.29 | 26.7 |
[N111(2O2)][TFSI] | 0.25 | 0.591 | 239.9 | −826.0 | 160.6 | 5.14 | 28.7 |
Ionic Liquid | |||||
---|---|---|---|---|---|
[N1114][TFSI] | - | 38.8 | 38.4 | - | 38.6 |
[N1114][TFSI] | 0.25 | 43.9 | 42.4 | 45.9 | 44.1 |
[N1114][TFSI] | 1.5 | 70.6 | 65.2 | 73.1 | 68.7 |
[N111(2O1)][TFSI] | - | 33.0 | 34.7 | - | 33.8 |
[N111(2O1)][TFSI] | 0.25 | 35.6 | 40.5 | 40.4 | 40.3 |
[N111(2O1)][TFSI] | 1.5 | 53.4 | 53.3 | 59.1 | 55.2 |
[N1114][FSI] | - | 32.7 | 29.7 | - | 31.2 |
[N1114][FSI] | 0.25 | 30.6 | 29.1 | 33.9 | 31.4 |
[N111(2O1)][FSI] | - | 28.3 | 27.6 | - | 27.9 |
[N111(2O1)][FSI] | 0.25 | 29.7 | 29.0 | 27.2 | 28.2 |
[N1115][TFSI] | - | 43.3 | 38.8 | - | 41.0 |
[N1115][TFSI] | 0.25 | 44.1 | 44.8 | 51.7 | 48.0 |
[N111(2O2)][TFSI] | - | 34.5 | 33.8 | - | 34.2 |
[N111(2O2)][TFSI] | 0.25 | 37.6 | 39.1 | 40.0 | 39.5 |
Ionic Liquid | Tangent Approach | Lithium Plating | |||||
---|---|---|---|---|---|---|---|
[N1114][TFSI] | - | >6.5 | 5.5 | - | - | - | - |
[N1114][TFSI] | 0.25 | 5.5 | 5.2 | 100 | 100 | 84 | yes |
[N1114][TFSI] | 1.5 | 5.5 | 5.3 | - | - | - | - |
[N111(2O1)][TFSI] | - | >6.5 | >6.5 | - | - | - | - |
[N111(2O1)][TFSI] | 0.25 | >6.5 | 6.2 | 100 | 99 | 100 | yes |
[N111(2O1)][TFSI] | 1.5 | 5.4 | 5.1 | - | - | - | - |
[N1114][FSI] | - | 6.2 | 4.9 | - | - | - | - |
[N1114][FSI] | 0.25 | 5.3 | 4.5 | 86 | n.a. | 98 | yes |
[N111(2O1)][FSI] | - | 6.2 | 5.5 | - | - | - | - |
[N111(2O1)][FSI] | 0.25 | 6.4 | 4.5 | n.a. | n.a | n.a. | yes |
[N1115][TFSI] | - | >6.5 | 5.4 | - | - | - | - |
[N1115][TFSI] | 0.25 | 5.5 | 5.0 | 99 | 100 | 64 | yes |
[N111(2O2)][TFSI] | - | 5.2 | 5.6 | - | - | - | - |
[N111(2O2)][TFSI] | 0.25 | 5.3 | 5.2 | 99 | 95 | 86 | yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rauber, D.; Hofmann, A.; Philippi, F.; Kay, C.W.M.; Zinkevich, T.; Hanemann, T.; Hempelmann, R. Structure-Property Relation of Trimethyl Ammonium Ionic Liquids for Battery Applications. Appl. Sci. 2021, 11, 5679. https://doi.org/10.3390/app11125679
Rauber D, Hofmann A, Philippi F, Kay CWM, Zinkevich T, Hanemann T, Hempelmann R. Structure-Property Relation of Trimethyl Ammonium Ionic Liquids for Battery Applications. Applied Sciences. 2021; 11(12):5679. https://doi.org/10.3390/app11125679
Chicago/Turabian StyleRauber, Daniel, Andreas Hofmann, Frederik Philippi, Christopher W. M. Kay, Tatiana Zinkevich, Thomas Hanemann, and Rolf Hempelmann. 2021. "Structure-Property Relation of Trimethyl Ammonium Ionic Liquids for Battery Applications" Applied Sciences 11, no. 12: 5679. https://doi.org/10.3390/app11125679
APA StyleRauber, D., Hofmann, A., Philippi, F., Kay, C. W. M., Zinkevich, T., Hanemann, T., & Hempelmann, R. (2021). Structure-Property Relation of Trimethyl Ammonium Ionic Liquids for Battery Applications. Applied Sciences, 11(12), 5679. https://doi.org/10.3390/app11125679