Protoporphyrin IX Based All-Solid-State Ion-Selective Electrodes for Choline Determination In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Ch ISEs
2.3. Electrochemical Instrumentation and Measurements
2.4. Evaluation of Potentiometric Performance
3. Results and Discussion
3.1. Dynamic Responses and Calibration Curve
3.2. Selective Coefficients to Common Cations
3.3. pH and Temperature Stability
3.4. Reproducibility and Repeatability
3.5. Life Span
3.6. Performance in Artificial Cerebrospinal Fluid
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018, 141, 1917–1933. [Google Scholar] [CrossRef] [PubMed]
- Sarter, M.; Parikh, V. Choline transporters, cholinergic transmission and cognition. Nat. Rev. Neurosci. 2005, 6, 48–56. [Google Scholar] [CrossRef]
- Shea, T.B. Choline and phosphatidylcholine may maintain cognitive performance by multiple mechanisms. Am. J. Clin. Nutr. 2019, 110, 1268–1269. [Google Scholar] [CrossRef]
- Soreq, H. Checks and balances on cholinergic signaling in brain and body function. Trends Neurosci. 2015, 38, 448–458. [Google Scholar] [CrossRef]
- Karaszewski, B.; Thomas, R.; Chappell, F.; Armitage, P.; Carpenter, T.; Lymer, G.; Dennis, M.; Marshall, I.; Wardlaw, J. Brain choline concentration: Early quantitative marker of ischemia and infarct expansion? Neurology 2010, 75, 850–856. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.C.; Hullar, M.A.; Randolph, T.W.; Franke, A.A.; Monroe, K.R.; Cheng, I.; Wilkens, L.R.; Shepherd, J.A.; Madeleine, M.M.; Le Marchand, L.; et al. Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study. Am. J. Clin. Nutr. 2020, 111, 1226–1234. [Google Scholar] [CrossRef]
- Korsmo, H.W.; Jiang, X.; Caudill, M.A. Choline: Exploring the growing science on its benefits for moms and babies. Nutrients 2019, 11, 1823. [Google Scholar] [CrossRef] [Green Version]
- Meyer, U. Neurodevelopmental resilience and susceptibility to maternal immune activation. Trends Neurosci. 2019, 42, 793–806. [Google Scholar] [CrossRef] [PubMed]
- Welch, M.; Markham, C.; Jenden, D. Acetylcholine and choline in cerebrospinal fluid of patients with Parkinson’s disease and Huntington’s chorea. J. Neurol. Neurosurg. Psychiatry 1976, 39, 367–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awwad, H.M.; Kirsch, S.H.; Geisel, J.; Obeid, R. Measurement of concentrations of whole blood levels of choline, betaine, and dimethylglycine and their relations to plasma levels. J. Chromatogr. B 2014, 957, 41–45. [Google Scholar] [CrossRef]
- Chen, H.; Lu, Q.; He, K.; Liu, M.; Zhang, Y.; Yao, S. A cyclic signal amplification strategy to fluorescence and colorimetric dual-readout assay for the detection of H2O2-related analytes and application to colorimetric logic gate. Sens. Actuators B Chem. 2018, 260, 908–917. [Google Scholar] [CrossRef]
- Hua, B.; Shao, L.; Zhang, Z.; Sun, J.; Yang, J. Pillar[6]arene/acridine orange host–guest complexes as colorimetric and fluorescence sensors for choline compounds and further application in monitoring enzymatic reactions. Sens. Actuators B Chem. 2018, 255, 1430–1435. [Google Scholar] [CrossRef]
- Wu, X.; Chai, Y.; Yuan, R.; Liang, W.; Yuan, D. A novel electrochemiluminescence choline biosensor based on biofunctional AMs-ChO biocomposite. Sens. Actuators B Chem. 2014, 204, 429–436. [Google Scholar] [CrossRef]
- Li, F.; Liu, J.; Guo, L.; Wang, J.; Zhang, K.; He, J.; Cui, H. High-resolution temporally resolved chemiluminescence based on double-layered 3D microfluidic paper-based device for multiplexed analysis. Biosens. Bioelectron. 2019, 141, 111472. [Google Scholar] [CrossRef] [PubMed]
- Hefni, M.; McEntyre, C.; Lever, M.; Slow, S. A simple HPLC method with fluorescence detection for choline quantification in foods. Food Anal. Methods 2015, 8, 2401–2408. [Google Scholar] [CrossRef]
- Inoue, T.; Kirchhoff, J.R.; Hudson, R.A. Enhanced measurement stability and selectivity for choline and acetylcholine by capillary electrophoresis with electrochemical detection at a covalently linked enzyme-modified electrode. Anal. Chem. 2002, 74, 5321–5326. [Google Scholar] [CrossRef]
- Rahimi, P.; Joseph, Y. Enzyme-based biosensors for choline analysis: A review. TrAC Trends Anal. Chem. 2019, 110, 367–374. [Google Scholar] [CrossRef]
- Yan, K.; Nandhakumar, P.; Bhatia, A.; Lee, N.S.; Yoon, Y.H.; Yang, H. Electrochemical immunoassay based on choline oxidase-peroxidase enzymatic cascade. Biosens. Bioelectron. 2021, 171, 112727. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.M.; Thapliyal, N.; Hussain, K.K.; Goyal, R.N.; Shim, Y.B. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review. Biosens. Bioelectron. 2018, 102, 540–552. [Google Scholar] [CrossRef]
- Baker, K.L.; Bolger, F.B.; Lowry, J.P. Development of a microelectrochemical biosensor for the real-time detection of choline. Sens. Actuators B Chem. 2017, 243, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Shadlaghani, A.; Farzaneh, M.; Kinser, D.; Reid, R.C. Direct electrochemical detection of glutamate, acetylcholine, choline, and adenosine using non-enzymatic electrodes. Sensors 2019, 19, 447. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Chen, J.; Wang, Y.; Yu, L.; Wang, J.; Peng, H.; Zhu, J. Improved enzyme immobilization for enhanced bioelectrocatalytic activity of choline sensor and acetylcholine sensor. Sens. Actuators B Chem. 2014, 193, 904–910. [Google Scholar] [CrossRef]
- He, C.; Wang, Z.; Wang, Y.; Hu, R.; Li, G. Nonenzymatic all-solid-state coated wire electrode for acetylcholine determination in vitro. Biosens. Bioelectron. 2016, 85, 679–683. [Google Scholar] [CrossRef]
- Durka, M.; Durka, K.; Adamczyk-Wozniak, A.; Wroblewski, W. Dopamine/2-Phenylethylamine sensitivity of ion-selective electrodes based on bifunctional-symmetrical boron receptors. Sensors 2019, 19, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikol’skaya, E.; Kormilitsyn, B.; Kugusheva, L. Determination of trace cholinergic compounds and the evaluation of their relative receptor activity with the use of a receptor biosensor and an ion-selective choline electrode. J. Anal. Chem. 2003, 58, 277–281. [Google Scholar] [CrossRef]
- Abd El-Rahman, M.K.; Mazzone, G.; Mahmoud, A.M.; Sicilia, E.; Shoeib, T. Novel choline selective electrochemical membrane sensor with application in milk powders and infant formulas. Talanta 2021, 221, 121409. [Google Scholar] [CrossRef] [PubMed]
- Ampurdanés, J.; Crespo, G.A.; Maroto, A.; Sarmentero, M.A.; Ballester, P.; Rius, F.X. Determination of choline and derivatives with a solid-contact ion-selective electrode based on octaamide cavitand and carbon nanotubes. Biosens. Bioelectron. 2009, 25, 344–349. [Google Scholar] [CrossRef]
- Blaser, G.; Sanderson, J.M.; Wilson, M.R. Free-energy relationships for the interactions of tryptophan with phosphocholines. Org. Biomol. Chem. 2009, 7, 5119–5128. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ji, H.; Tang, J.; Tao, F.; Zhang, X.; Yao, Z.; Song, H.; Li, C.; Wang, F. Electrochemical activation and renewal of pyrrole nitrogen sites in porphyrin-based conjugated polymer for simultaneous determination of uric acid and adrenaline. J. Electroanal. Chem. 2021, 884, 115055. [Google Scholar] [CrossRef]
- Kielmann, M.; Senge, M.O. Molecular Engineering of Free-Base Porphyrins as Ligands—The N-H...X Binding Motif in Tetrapyrroles. Angew. Chem. Int. Ed. 2019, 58, 418–441. [Google Scholar] [CrossRef]
- Braegelman, A.S.; Webber, M.J. Integrating stimuli-responsive properties in host-guest supramolecular drug delivery systems. Theranostics 2019, 9, 3017. [Google Scholar] [CrossRef]
- Kayser, L.V.; Lipomi, D.J. Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Adv. Mater. 2019, 31, 1806133. [Google Scholar] [CrossRef] [Green Version]
- Bodart, C.; Rossetti, N.; Hagler, J.; Chevreau, P.; Chhin, D.; Soavi, F.; Schougaard, S.B.; Amzica, F.; Cicoira, F. Electropolymerized poly (3,4-ethylenedioxythiophene)(PEDOT) coatings for implantable deep-brain-stimulating microelectrodes. ACS Appl. Mater. Interfaces 2019, 11, 17226–17233. [Google Scholar] [CrossRef]
- Green, R.A.; Hassarati, R.T.; Bouchinet, L.; Lee, C.S.; Cheong, G.L.; Jin, F.Y.; Dodds, C.W.; Suaning, G.J.; Poole-Warren, L.A.; Lovell, N.H. Substrate dependent stability of conducting polymer coatings on medical electrodes. Biomaterials 2012, 33, 5875–5886. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Yuk, H.; Lin, S.; Jian, N.; Qu, K.; Xu, J.; Zhao, X. Pure Pedot: Pss hydrogels. Nat. Commun. 2019, 10, 1–10. [Google Scholar]
- Wen, Y.; Xu, J. Scientific Importance of Water-Processable PEDOT–PSS and Preparation, Challenge and New Application in Sensors of Its Film Electrode: A Review. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 1121–1150. [Google Scholar] [CrossRef] [Green Version]
- Alberty, R.A. Recommendations for nomenclature and tables in biochemical thermodynamics (IUPAC recommendations 1994). Pure Appl. Chem. 1994, 66, 1641–1666. [Google Scholar] [CrossRef]
- Galvis-Sánchez, A.C.; Santos, J.R.; Rangel, A.O. Standard addition flow method for potentiometric measurements at low concentration levels: Application to the determination of fluoride in food samples. Talanta 2015, 133, 1–6. [Google Scholar] [CrossRef]
- Chapp, A.D.; Schum, S.; Behnke, J.E.; Hahka, T.; Huber, M.J.; Jiang, E.; Larson, R.A.; Shan, Z.; Chen, Q.H. Measurement of cations, anions, and acetate in serum, urine, cerebrospinal fluid, and tissue by ion chromatography. Physiol. Rep. 2018, 6, e13666. [Google Scholar] [CrossRef] [Green Version]
- Hladky, S.B.; Barrand, M.A. Mechanisms of fluid movement into, through and out of the brain: Evaluation of the evidence. Fluids Barriers CNS 2014, 11, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Berton, P.; Tian, H.; Rogers, R.D. Phase Behavior of Aqueous Biphasic Systems with Choline Alkanoate Ionic Liquids and Phosphate Solutions: The Influence of pH. Molecules 2021, 26, 1702. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, K. Acetylcholine and Choline Amperometric Enzyme Sensors Characterized In Vitro and In Vivo. Anal. Chem. 2004, 76, 1098–1106. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, M.; Brashear, R.; Mattingly, P. Choline Concentration in Normal Blood Donor and Cardiac Troponin-Positive Plasma Samples. Clin. Chem. 2006, 52, 2123–2124. [Google Scholar] [CrossRef] [Green Version]
- Graaf, M. In vivo magnetic resonance spectroscopy: Basic methodology and clinical applications. Eur. Biophys. J. 2009, 39, 527–540. [Google Scholar] [CrossRef] [Green Version]
- Zeisel, S.H.; Mar, M.H.; Howe, J.C.; Holden, J.M. Concentrations of choline-containing compounds and betaine in common foods. J. Nutr. 2003, 133, 1302–1307. [Google Scholar] [CrossRef]
- Dorrius, M.D.; Pijnappel, R.M.; Jansen-van der Weide, M.C.; Jansen, L.; Kappert, P.; Oudkerk, M.; Sijens, P.E. Determination of choline concentration in breast lesions: Quantitative multivoxel proton MR spectroscopy as a promising noninvasive assessment tool to exclude benign lesions. Radiology 2011, 259, 695–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Interference | Constant Concentration (M) | Selective Coefficient (Log) |
---|---|---|
K | 0.1 | −2.93 |
Na | 0.1 | −4.54 |
Ca | 0.1 | −4.50 |
GC | 0.1 | −4.00 |
DA | 0.01 | −2.00 |
AA | 0.01 | −3.50 |
HA | 0.01 | −1.93 |
Number of Ch ISE | C(Ch) (μM) | |||
---|---|---|---|---|
3 | 10 | 100 | ||
No. 1 | Mean (μM) | 2.92 | 10.15 | 108.11 |
S. D. (μM) | 0.16 | 0.29 | 1.99 | |
R. S. D (%) | 7.57 | 1.48 | 8.11 | |
No. 2 | Mean (μM) | 2.9 | 9.93 | 105.75 |
S. D. (μM) | 0.02 | 0.1 | 2.51 | |
R. S. D (%) | 8.1 | 0.71 | 5.75 | |
No. 3 | Mean (μM) | 2.97 | 9.98 | 107.46 |
S. D. (μM) | 0.06 | 0.19 | 0.59 | |
R. S. D (%) | 5.86 | 0.24 | 7.46 | |
No. 4 | Mean (μM) | 2.86 | 9.78 | 109.59 |
S. D. (μM) | 0.25 | 0.52 | 4.29 | |
R. S. D (%) | 9.35 | 2.16 | 9.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ma, S.; Zou, H.; Wu, Z.; Luo, Z.; Li, G. Protoporphyrin IX Based All-Solid-State Ion-Selective Electrodes for Choline Determination In Vitro. Appl. Sci. 2021, 11, 5549. https://doi.org/10.3390/app11125549
Wang Y, Ma S, Zou H, Wu Z, Luo Z, Li G. Protoporphyrin IX Based All-Solid-State Ion-Selective Electrodes for Choline Determination In Vitro. Applied Sciences. 2021; 11(12):5549. https://doi.org/10.3390/app11125549
Chicago/Turabian StyleWang, You, Siyuan Ma, Hongqun Zou, Zhenyu Wu, Zhiyuan Luo, and Guang Li. 2021. "Protoporphyrin IX Based All-Solid-State Ion-Selective Electrodes for Choline Determination In Vitro" Applied Sciences 11, no. 12: 5549. https://doi.org/10.3390/app11125549
APA StyleWang, Y., Ma, S., Zou, H., Wu, Z., Luo, Z., & Li, G. (2021). Protoporphyrin IX Based All-Solid-State Ion-Selective Electrodes for Choline Determination In Vitro. Applied Sciences, 11(12), 5549. https://doi.org/10.3390/app11125549