Next Article in Journal
The Role of Prediabetes as a Predictive Factor for the Outcomes in Patients with STEMI. Which Is the Right Range of Glycated Hemoglobin to Adopt in This Setting?
Previous Article in Journal
Biovalorization of Lignocellulosic Materials for Xylitol Production by the Yeast Komagataella pastoris
Previous Article in Special Issue
The Triad Hsp60-miRNAs-Extracellular Vesicles in Brain Tumors: Assessing Its Components for Understanding Tumorigenesis and Monitoring Patients
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Editorial for the Special Issue “Extracellular Chaperones and Related miRNA as Diagnostic Tools of Chronic Diseases”

by
Claudia Marino
1,
Magdalena Gorska-Ponikowska
2,
Francesca Rappa
3 and
Francesco Cappello
3,*
1
Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
2
Department of Medical Chemistry, Medical University of Gdansk, 1 Debinki Street, 80-211 Gdansk, Poland
3
Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
*
Author to whom correspondence should be addressed.
Appl. Sci. 2021, 11(12), 5517; https://doi.org/10.3390/app11125517
Submission received: 3 June 2021 / Accepted: 8 June 2021 / Published: 15 June 2021
Molecular chaperones are a family of proteins that are highly conserved during phylogenesis. They are among the oldest molecules since the appearance of life on Earth, and it is believed that they contributed to the survival of protocells in response to several stressors, both chemical and physical (radiation, temperature, pH, osmolarity, etc.) [1]. Further, these proteins are critically involved in cell proliferation and differentiation, tissue homeostasis, and organ remodeling [1,2].
Since chaperones are very important in preserving cell physiology and tissue homeostasis, their malfunction (for genetic or environmental factors) can result in the pathogenesis of several diseases [3,4,5,6,7,8,9]. Many illnesses, either congenital or not, are now referred to as “chaperonopathies” including a few neurodegenerative disorders, cancers, and autoimmune diseases [10]. This novel classification as chaperonopathies could serve as a guide for physicians and biomedical researchers toward the design of novel diagnostic tools or better disease-modifying therapies.
It has only been a few decades since the discovery that molecular chaperones can be actively released by cells and can have a variety of functions in the extracellular environment [11,12,13]. The most attentive is the interaction between these molecules and the immune system, thus leading to either triggering or modulating the immune response [14,15]. However, other paracrine roles have also been proposed, e.g., in tumorigenesis, favoring tumor cell survival and metastasizing [16]. This latter discovery promoted increasing interest in elucidating not yet fully understood secretory pathways of molecular chaperones [17,18]. Among them, the multivesicular bodies pathway is gaining growing attention as exosomes were “re-discovered” in the last decades.
More recently, a growing interest among the scientific community aims to explore the significance of miRNA secretion by exosomes. Interestingly, a link has been found between these miRNA and molecular chaperones’ expression in target cells [19]. This fact increased enormously the interest in the field of chaperonology, as supported by the increased number of experimental protocols that have been proposed to test molecular chaperones as novel diagnostic tools of human diseases [20].
This Special Issue includes several examples of studies conducted in this sense [21,22,23,24,25,26,27,28]. Further, the goal of this issue is to provide novel scientific perspectives and experimental protocols that can be considered in the study of extracellular chaperones and related miRNA.

Funding

M.G.-P. is supported by the ST46 grant funded by Polish Ministry of Science and Higher Education, Medical University of Gdansk, Gdansk, Poland funding. All other authors received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Cappello, F.; Conway de Macario, E.; Macario, A.J.L. HSP60: A Story as Long as Life on the Earth. In Heat Shock Protein 60 in Human Diseases and Disorders; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
  2. Calabrese, V.; Scapagnini, G.; Ravagna, A.; Giuffrida Stella, A.M.; Butterfield, D.A. Molecular chaperones and their roles in neural cell differentiation. Dev. Neurosci. 2002, 24, 1–13. [Google Scholar] [CrossRef]
  3. Bellipanni, G.; Cappello, F.; Scalia, F.; Conway de Macario, E.; Macario, A.J.L.; Giordano, A. Zebrafish as a Model for the Study of Chaperonopathies. J. Cell. Physiol. 2016, 231, 2107–2114. [Google Scholar] [CrossRef] [Green Version]
  4. Rappa, F.; Farina, F.; Zummo, G.; David, S.; Campanella, C.; Carini, F.; Tomasello, G.; Damiani, P.; Cappello, F.; Conway de Macario, E.; et al. HSP-molecular chaperones in cancer biogenesis and tumor therapy: An overview. Anticancer. Res. 2012, 32, 5139–5150. [Google Scholar] [PubMed]
  5. Scalia, F.; Marino Gammazza, A.; Conway de Macario, E.; Macario, A.J.L.; Cappello, F. Myelin Pathology: Involvement of Molecular Chaperones and the Promise of Chaperonotherapy. Brain Sci. 2019, 9, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. Basset, C.A.; Cappello, F.; Rappa, F.; Lentini, V.L.; Jurjus, A.R.; Conway de Macario, E.; Macario, A.J.L.; Leone, A. Molecular chaperones in tumors of salivary glands. J. Mol. Histol. 2020, 51, 109–115. [Google Scholar] [CrossRef] [PubMed]
  7. Marino Gammazza, A.; Légaré, S.; Lo Bosco, G.; Fucarino, A.; Angileri, F.; Conway de Macario, E.; Macario, A.J.L.; Cappello, F. Human molecular chaperones share with SARS-CoV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: Possible role of molecular mimicry in COVID-19. Cell Stress Chaperones 2020, 25, 737–741. [Google Scholar] [CrossRef]
  8. Paladino, L.; Vitale, A.M.; Caruso Bavisotto, C.; Conway de Macario, E.; Cappello, F.; Macario, A.J.L.; Marino Gammazza, A. The Role of Molecular Chaperones in Virus Infection and Implications for Understanding and Treating COVID-19. J. Clin. Med. 2020, 9, 3518. [Google Scholar] [CrossRef]
  9. Marino, C.; Krishnan, B.; Cappello, F.; Taglialatela, G. Hsp60 Protects against Amyloid β Oligomer Synaptic Toxicity via Modification of Toxic Oligomer Conformation. ACS Chem. Neurosci. 2019, 10, 2858–2867. [Google Scholar] [CrossRef]
  10. Macario, A.J.L.; Conway de Macario, E. Chaperonopathies and chaperonotherapy. FEBS Lett. 2007, 581, 3681–3688. [Google Scholar] [CrossRef] [Green Version]
  11. Reddy, V.S.; Madala, S.K.; Trinath, J.; Reddy, G.B. Extracellular small heat shock proteins: Exosomal biogenesis and function. Cell Stress Chaperones 2018, 23, 441–454. [Google Scholar] [CrossRef]
  12. Tsutsumi, S.; Neckers, L. Extracellular heat shock protein 90: A role for a molecular chaperone in cell motility and cancer metastasis. Cancer Sci. 2007, 98, 1536–1539. [Google Scholar] [CrossRef] [PubMed]
  13. De Maio, A.; Vazquez, D. Extracellular Heat Shock Proteins: A new location, a new function. Shock 2013, 40, 239–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Zhao, Y.; Zhang, C.; Wei, X.; Li, P.; Cui, Y.; Qin, Y.; Wei, X.; Jin, M.; Kohama, K.; Gao, Y. Heat shock protein 60 stimulates the migration of vascular smooth muscle cells via Toll-like receptor 4 and ERK MAPK activation. Sci. Rep. 2015, 5, 15352. [Google Scholar] [CrossRef] [PubMed]
  15. Mansilla, M.J.; Costa, C.; Eixarch, H.; Tepavcevic, V.; Castillo, M.; Martin, R.; Lubetzki, C.; Aigrot, M.-S.; Montalban, X.; Espejo, C. Hsp70 Regulates Immune Response in Experimental Autoimmune Encephalomyelitis. PLoS ONE 2014, 9, e105737. [Google Scholar] [CrossRef] [Green Version]
  16. Albakova, Z.; Siam, M.K.S.; Sacitharan, P.K.; Ziganshin, R.H.; Ryazantsev, D.Y.; Sapozhnikov, A.M. Extracellular heat shock proteins and cancer: New perspectives. Transl. Oncol. 2021, 14, 100995. [Google Scholar] [CrossRef]
  17. Marino Gammazza, A.; Restivo, V.; Baschi, R.; Caruso Bavisotto, C.; Cefalù, A.B.; Accardi, G.; Conway de Macario, E.; Macario, A.J.L.; Cappello, F.; Monastero, R. Circulating Molecular Chaperones in Subjects with Amnestic Mild Cognitive Impairment and Alzheimer’s Disease: Data from the Zabùt Aging Project. J. Alzheimers Dis. 2018, 1–12. [Google Scholar] [CrossRef]
  18. Caruso Bavisotto, C.; Cipolla, C.; Graceffa, G.; Barone, R.; Bucchieri, F.; Bulone, D.; Cabibi, D.; Campanella, C.; Marino Gammazza, A.; Pitruzzella, A.; et al. Immunomorphological Pattern of Molecular Chaperones in Normal and Pathological Thyroid Tissues and Circulating Exosomes: Potential Use in Clinics. Int. J. Mol. Sci. 2019, 20, 4496. [Google Scholar] [CrossRef] [Green Version]
  19. Place, R.F.; Noonan, E.J. Non-coding RNAs turn up the heat: An emerging layer of novel regulators in the mammalian heat shock response. Cell Stress Chaperones 2014, 19, 159–172. [Google Scholar] [CrossRef] [Green Version]
  20. Caruso Bavisotto, C.; Graziano, F.; Rappa, F.; Marino Gammazza, A.; Logozzi, M.; Fais, S.; Maugeri, R.; Bucchieri, F.; Conway de Macario, E.; Macario, A.J.L.; et al. Exosomal Chaperones and miRNAs in Gliomagenesis: State-of-Art and Theranostics Perspectives. Int. J. Mol. Sci. 2018, 19, 2626. [Google Scholar] [CrossRef] [Green Version]
  21. Magdy Beshbishy, A.; Alghamdi, S.; Onyiche, T.; Zahoor, M.; Rivero-Perez, N.; Zaragoza-Bastida, A.; Ghorab, M.; Meshaal, A.; El-Esawi, M.; Hetta, H.; et al. Biogenesis, Biologic Function and Clinical Potential of Exosomes in Different Diseases. Appl. Sci. 2020, 10, 4428. [Google Scholar] [CrossRef]
  22. Krawczyk, M.; Pospieszynska, A.; Styczewska, M.; Bien, E.; Sawicki, S.; Marino Gammazza, A.; Fucarino, A.; Gorska-Ponikowska, M. Extracellular Chaperones as Novel Biomarkers of Overall Cancer Progression and Efficacy of Anticancer Therapy. Appl. Sci. 2020, 10, 6009. [Google Scholar] [CrossRef]
  23. Vitale, A.; Santonocito, R.; Vergilio, G.; Marino Gammazza, A.; Campanella, C.; Conway de Macario, E.; Bucchieri, F.; Macario, A.; Caruso Bavisotto, C. Brain Tumor-Derived Extracellular Vesicles as Carriers of Disease Markers: Molecular Chaperones and MicroRNAs. Appl. Sci. 2020, 10, 6961. [Google Scholar] [CrossRef]
  24. Nuzziello, N.; Consiglio, A.; Viterbo, R.; Licciulli, F.; Liuni, S.; Trojano, M.; Liguori, M. A Pilot Longitudinal Evaluation of MicroRNAs for Monitoring the Cognitive Impairment in Pediatric Multiple Sclerosis. Appl. Sci. 2020, 10, 8274. [Google Scholar] [CrossRef]
  25. Alberti, G.; Paladino, L.; Vitale, A.; Caruso Bavisotto, C.; Conway de Macario, E.; Campanella, C.; Macario, A.; Marino Gammazza, A. Functions and Therapeutic Potential of Extracellular Hsp60, Hsp70, and Hsp90 in Neuroinflammatory Disorders. Appl. Sci. 2021, 11, 736. [Google Scholar] [CrossRef]
  26. Scalia, F.; Vitale, A.; Santonocito, R.; Conway de Macario, E.; Macario, A.; Cappello, F. The Neurochaperonopathies: Anomalies of the Chaperone System with Pathogenic Effects in Neurodegenerative and Neuromuscular Disorders. Appl. Sci. 2021, 11, 898. [Google Scholar] [CrossRef]
  27. David, S.; Vitale, A.; Fucarino, A.; Scalia, F.; Vergilio, G.; Conway de Macario, E.; Macario, A.; Caruso Bavisotto, C.; Pitruzzella, A. The Challenging Riddle about the Janus-Type Solution. Appl. Sci. 2021, 11, 1175. [Google Scholar] [CrossRef]
  28. Graziano, F.; Iacopino, D.; Cammarata, G.; Scalia, G.; Campanella, C.; Giannone, A.; Porcasi, R.; Florena, A.; Conway de Macario, E.; Macario, A.; et al. The Triad Hsp60-miRNAs-Extracellular Vesicles in Brain Tumors: Assessing Its Components for Understanding Tumorigenesis and Monitoring Patients. Appl. Sci. 2021, 11, 2867. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Marino, C.; Gorska-Ponikowska, M.; Rappa, F.; Cappello, F. Editorial for the Special Issue “Extracellular Chaperones and Related miRNA as Diagnostic Tools of Chronic Diseases”. Appl. Sci. 2021, 11, 5517. https://doi.org/10.3390/app11125517

AMA Style

Marino C, Gorska-Ponikowska M, Rappa F, Cappello F. Editorial for the Special Issue “Extracellular Chaperones and Related miRNA as Diagnostic Tools of Chronic Diseases”. Applied Sciences. 2021; 11(12):5517. https://doi.org/10.3390/app11125517

Chicago/Turabian Style

Marino, Claudia, Magdalena Gorska-Ponikowska, Francesca Rappa, and Francesco Cappello. 2021. "Editorial for the Special Issue “Extracellular Chaperones and Related miRNA as Diagnostic Tools of Chronic Diseases”" Applied Sciences 11, no. 12: 5517. https://doi.org/10.3390/app11125517

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop