Towards an Optical Gas Standard for Traceable Calibration-Free and Direct NO2 Concentration Measurements
Abstract
:1. Introduction
2. Experimental
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Salonen, H.; Salthammer, T.; Morawska, L. Human exposure to NO2 in school and office indoor environments. Environ. Int. 2019, 130, 104887. [Google Scholar] [CrossRef] [PubMed]
- EMPIR Project 16ENV02 Metrology for Nitrogen Dioxide (MetNO2). Available online: http://empir.npl.co.uk/metno2/ (accessed on 29 April 2021).
- European Standard: Ambient Air—Standard Method for the Measurement of the Concentration of Nitrogen Dioxide and Nitrogen Monoxide by Chemiluminescence, EN 14211:2012. Available online: https://www.beuth.de/en/standard/din-en-14211/146720023 (accessed on 27 May 2021).
- Miller, C.C. Chemiluminescence Analysis and Nitrogen-Dioxide Measurement. Lancet 1994, 343, 300–301. [Google Scholar] [CrossRef]
- Steinbacher, M.; Zellweger, C.; Schwarzenbach, B.; Bugmann, S.; Buchmann, B.; Ordóñez, C.; Prevot, A.S.H.; Hueglin, C. Nitrogen oxide measurements at rural sites in Switzerland: Bias of conventional measurement techniques. J. Geophys. Res. Atmos. 2007, 112, D11307. [Google Scholar] [CrossRef] [Green Version]
- EMPIR Project 19ENV09 Improved Vehicle Exhaust Quantification by Portable Emission Measurement Systems Metrology (MetroPEMS). Available online: https://www.metropems.ptb.de/home/ (accessed on 29 April 2021).
- Nwaboh, J.A.; Qu, Z.; Werhahn, O.; Ebert, V. Interband cascade laser-based optical transfer standard for atmospheric carbon monoxide measurements. Appl. Opt. 2017, 56, E84–E93. [Google Scholar] [CrossRef]
- Buchholz, B.; Böse, N.; Ebert, V. Absolute validation of a diode laser hygrometer via intercomparison with the German national primary water vapor standard. Appl. Phys. B 2014, 116, 883–899. [Google Scholar] [CrossRef]
- Pogany, A.; Wagner, S.; Werhahn, O.; Ebert, V. Development and Metrological Characterization of a Tunable Diode Laser Absorption Spectroscopy (TDLAS) Spectrometer for Simultaneous Absolute Measurement of Carbon Dioxide and Water Vapor. Appl. Spectrosc. 2015, 69, 257–268. [Google Scholar] [CrossRef]
- Qu, Z.; Nwaboh, J.; Werhahn, O.; Ebert, V. Towards a dTDLAS-Based Spectrometer for Absolute HCl Measurements in Combustion Flue Gases and a Better Evaluation of Thermal Boundary Layer Effects. Flow Turbul. Combust. 2021, 106, 533–546. [Google Scholar] [CrossRef]
- Wagner, S.; Klein, M.; Kathrotia, T.; Riedel, U.; Kissel, T.; Dreizler, A.; Ebert, V. Absolute, spatially resolved, in situ CO profiles in atmospheric laminar counter-flow diffusion flames using 2.3 μm TDLAS. Appl. Phys. B 2012, 109, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Li, F.; Cheng, X.; Yang, Y.; Lin, X.; Xia, Y. Sensitive detection of CO2 concentration and temperature for hot gases using quantum-cascade laser absorption spectroscopy near 4.2 μm. Appl. Phys. B 2014, 117, 659–666. [Google Scholar] [CrossRef]
- Foltynowicz, A.; Schmidt, F.M.; Ma, W.; Axner, O. Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential. Appl. Phys. B 2008, 92, 313–326. [Google Scholar] [CrossRef]
- Henderson, B.; Khodabakhsh, A.; Metsälä, M.; Ventrillard, I.; Schmidt, F.M.; Romanini, D.; Ritchie, G.A.D.; Hekkert, S.T.L.; Briot, R.; Risby, T.; et al. Laser spectroscopy for breath analysis: Towards clinical implementation. Appl. Phys. B 2018, 124, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCurdy, M.R.; Bakhirkin, Y.; Wysocki, G.; Lewicki, R.; Tittel, F.K. Recent advances of laser-spectroscopy-based techniques for applications in breath analysis. J. Breath Res. 2007, 1, 014001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, X.; Jeffries, J.B.; Hanson, R.K. Absorption sensor for CO in combustion gases using 2.3 µm tunable diode lasers. Meas. Sci. Technol. 2009, 20, 115201. [Google Scholar] [CrossRef]
- Goldenstein, C.S.; Spearrin, R.M.; Jeffries, J.B.; Hanson, R.K. Wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in high-pressure and -temperature gases. Appl. Phys. B 2014, 116, 705–716. [Google Scholar] [CrossRef]
- Graf, M.; Scheidegger, P.; Kupferschmid, A.; Looser, H.; Peter, T.; Dirksen, R.; Emmenegger, L.; Tuzson, B. Compact and lightweight mid-infrared laser spectrometer for balloon-borne water vapor measurements in the UTLS. Atmos. Meas. Tech. 2021, 14, 1365–1378. [Google Scholar] [CrossRef]
- Viciani, S.; Montori, A.; Chiarugi, A.; D’Amato, F. A Portable Quantum Cascade Laser Spectrometer for Atmospheric Measurements of Carbon Monoxide. Sensors 2018, 18, 2380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sur, R.; Ding, Y.; Jackson, R.B.; Hanson, R.K. Tunable laser-based detection of benzene using spectrally narrow absorption features. Appl. Phys. B 2019, 125, 195. [Google Scholar] [CrossRef]
- Liu, N.; Linguang, X.; Sheng, Z.; Tianbo, H.; Lei, Z.; Dianming, W.; Jingsong, L. Sensitive detection of atmospheric N2O isotopomers using a quantum cascade laser based spectrometer. J. Quant. Spectrosc. Radiat. Transf. 2019, 236, 106587. [Google Scholar] [CrossRef]
- Sobanski, N.; Tuzson, B.; Scheidegger, P.; Looser, H.; Kupferschmid, A.; Iturrate, M.; Pascale, C.; Hüglin, C.; Emmenegger, L. Advances in High-Precision NO2 Measurement by Quantum Cascade Laser Absorption Spectroscopy. Appl. Sci. 2021, 11, 1222. [Google Scholar] [CrossRef]
- Diemel, O.; Honza, R.; Ding, C.-P.; Böhm, B.; Wagner, S. In situ sensor for cycle-resolved measurement of temperature and mole fractions in IC engine exhaust gases. Proc. Combust. Inst. 2019, 37, 1453–1460. [Google Scholar] [CrossRef]
- Kebabian, P.L.; Herndon, S.C.; Freedman, A. Detection of Nitrogen Dioxide by Cavity Attenuated Phase Shift Spectroscopy. Anal. Chem. 2005, 77, 724–728. [Google Scholar] [CrossRef] [PubMed]
- Sur, R.; Peng, W.Y.; Strand, C.; Spearrin, R.M.; Jeffries, J.B.; Hanson, R.K.; Bekal, A.; Halder, P.; Poonacha, S.P.; Vartak, S.; et al. Mid-infrared laser absorption spectroscopy of NO2 at elevated temperatures. J. Quant. Spectrosc. Radiat. Transf. 2017, 187, 364–374. [Google Scholar] [CrossRef]
- Hundt, P.M.; Müller, M.; Mangold, M.; Tuzson, B.; Scheidegger, P.; Looser, H.; Hüglin, C.; Emmenegger, L. Mid-IR spectrometer for mobile, real-time urban NO2 measurements. Atmos. Meas. Tech. 2018, 11, 2669–2681. [Google Scholar] [CrossRef] [Green Version]
- Horii, C.V.; Zahniser, M.S.; Nelson, D.D., Jr.; McManus, J.B.; Wofsy, S.C. Nitric acid and nitrogen dioxide flux measurements: A new application of tunable diode laser absorption spectroscopy. In Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II; SPIE: Denver, CO, USA, 1999; Volume 3758, pp. 152–161. [Google Scholar] [CrossRef]
- Mazurenka, M.I.; Fawcett, B.L.; Elks, J.M.F.; Shallcross, D.E.; Orr-Ewing, A.J. 410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2. Chem. Phys. Lett. 2003, 367, 1–9. [Google Scholar] [CrossRef]
- Pan, Y.; Dong, L.; Yin, X.; Wu, H. Compact and Highly Sensitive NO2 Photoacoustic Sensor for Environmental Monitoring. Molecules 2020, 25, 1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dooly, G.; Fitzpatrick, C.; Lewis, E. Hazardous exhaust gas monitoring using a deep UV based differential optical absorption spectroscopy (DOAS) system. J. Phys. Conf. Ser. 2007, 76, 012021. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, T.; Liu, X.; Liu, Y. Automobile exhaust simulation detection system based on photoacoustic spectroscopy. In Proceedings of the ICOSM 2020: Optoelectronic Science and Materials, Hefei, China, 25–27 September 2020; Volume 11606, p. 1160608. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Sumizawa, H.; Yamada, H.; Tonokura, K. Real-time measurement of nitrogen dioxide in vehicle exhaust gas by mid-infrared cavity ring-down spectroscopy. Appl. Phys. B 2011, 105, 923–931. [Google Scholar] [CrossRef]
- Li, Z.; Hu, R.; Xie, P.; Chen, H.; Liu, X.; Liang, S.; Wang, D.; Wang, F.; Wang, Y.; Lin, C.; et al. Simultaneous measurement of NO and NO2 by a dual-channel cavity ring-down spectroscopy technique. Atmos. Meas. Tech. 2019, 12, 3223–3236. [Google Scholar] [CrossRef] [Green Version]
- ISO. ISO Guide 98-3, Guide to the Expression of Uncertainty in Measurement; International Organization for Standardization: Geneva, Switzerland, 2008; ISBN 9267101889. [Google Scholar]
- Zacharof, N.; Tietge, U.; Franco, V.; Mock, P. Type approval and real-world CO2 and NOx emissions from EU light commercial vehicles. Energy Policy 2016, 97, 540–548. [Google Scholar] [CrossRef]
- Werhahn, O.; Petersen, J.C. (Eds.) TILSAM Technical Protocol V1_2010-09-29. 2010. Available online: http://www.euramet.org/fileadmin/docs/projects/934_METCHEM_Interim_Report.pdf (accessed on 29 April 2021).
- Nwaboh, J.A.; Persijn, S.; Arrhenius, K.; Bohlén, H.; Werhahn, O.; Ebert, V. Metrological quantification of CO in biogas using laser absorption spectroscopy and gas chromatography. Meas. Sci. Technol. 2018, 29, 095010. [Google Scholar] [CrossRef]
- The NIST Standard Reference Photometer for Ozone Measurement Traceability. Available online: https://www.nist.gov/programs-projects/nist-standard-reference-photometer-ozone-measurement-traceability (accessed on 29 April 2021).
- Witzel, O.; Klein, A.; Wagner, S.; Meffert, C.; Schulz, C.; Ebert, V. High-speed tunable diode laser absorption spectroscopy for sampling-free in-cylinder water vapor concentration measurements in an optical IC engine. Appl. Phys. B 2012, 109, 521–532. [Google Scholar] [CrossRef]
- Klein, A.; Witzel, O.; Ebert, V. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy. Sensors 2014, 14, 21497–21513. [Google Scholar] [CrossRef] [Green Version]
- Witzel, O.; Klein, A.; Meffert, C.; Schulz, C.; Kaiser, S.A.; Ebert, V. Calibration-free, high-speed, in-cylinder laser absorption sensor for cycle-resolved, absolute H2O measurements in a production IC engine. Proc. Combust. Inst. 2015, 35, 3653–3661. [Google Scholar] [CrossRef]
- Witzel, O.; Klein, A.; Meffert, C.; Wagner, S.; Kaiser, S.; Schulz, C.; Ebert, V. VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines. Opt. Express 2013, 21, 19951. [Google Scholar] [CrossRef] [PubMed]
- Nwaboh, J.A.; Qu, Z.; Li, G.; Kim, M.E.; Petersen, J.C.; Balslev-Harder, D.; Werhahn, O.; Ebert, V. Diode laser spectrometer for NO2 quantification: Absolute laser spectroscopic and direct NO2 concentration measurements for atmospheric monitoring within the EMPIR project MetNO2. In Proceedings of the EGU General Assembly 2020, Online. 4–8 May 2020. EGU2020-19259. [Google Scholar] [CrossRef]
- Whiting, E.E. An empirical approximation to the Voigt profile. J. Quant. Spectrosc. Radiat. Transf. 1968, 8, 1379–1384. [Google Scholar] [CrossRef]
- HITRAN Database. Available online: https://hitran.org/ (accessed on 29 April 2021).
- Ngo, N.H.; Lisak, D.; Tran, H.; Hartmann, J.-M. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes. J. Quant. Spectrosc. Radiat. Transf. 2013, 129, 89–100. [Google Scholar] [CrossRef]
- Ngo, N.H.; Lisak, D.; Tran, H.; Hartmann, J.-M. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes. J. Quant. Spectrosc. Radiat. Transf. 2013, 129, 89–100, Erratum in J. Quant. Spectrosc. Radiat. Transf. 2014, 134, 105. [Google Scholar] [CrossRef]
- Tennyson, J.; Bernath, P.F.; Campargue, A.; Csaszar, A.G.; Daumont, L.; Gamache, R.R.; Hodges, J.T.; Lisak, D.; Naumenko, O.V.; Rothman, L.S.; et al. Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report). Pure Appl. Chem. 2014, 86, 1931–1943. [Google Scholar] [CrossRef] [Green Version]
- Werle, P.; Mücke, R.; Slemr, F. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS). Appl. Phys. B 1993, 57, 131–139. [Google Scholar] [CrossRef]
- Deutscher Kalibrierdienst (DKD). Available online: https://www.dkd.eu/ (accessed on 29 April 2021).
- Werwein, V.; Brunzendorf, J.; Li, G.; Serdyukov, A.; Werhahn, O.; Ebert, V. High-resolution Fourier transform measurements of line strengths in the 0002-0000 main isotopologue band of nitrous oxide. Appl. Opt. 2017, 56, E99–E105. [Google Scholar] [CrossRef]
- Pogany, A.; Ott, O.; Werhahn, O.; Ebert, V. Towards traceability in CO2 line strength measurements by TDLAS at 2.7 µm. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 147–157. [Google Scholar] [CrossRef]
Parameter | Value | Relative Standard Uncertainty (k = 1)/% | Index (% Individual Contribution) |
---|---|---|---|
Pressure | 108.5 hPa | 0.20 | 0.10 |
Temperature | 294.3 K | 0.10 | ≤0.05 |
Path length | 77.4 cm | 0.13 | ≤0.05 |
Line strength (HITRAN value [40]) | 5.425·10−21 cm/molecule | 5.00 | 96.00 |
Line area | 0.0010999414 cm−1 | 1.00 | 3.80 |
NO2 concentration (xNO2) result | 982 µmol/mol | 5.10 (combined uncertainty) |
Quantity | Value |
---|---|
Current concentration range (NO2) | 100–1000 µmol/mol |
Optimal precision | 0.825 µmol/mol at Δt = 86 s |
GUM compliant total relative uncertainty | 5.1% (k = 1) |
Relative repeatability at 1000 µmol/mol and at 100 µmol levels | 0.1% and 0.5% |
Time resolution (max = single scan to 10 scan average) | 0.06 * sec to 0.5 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nwaboh, J.A.; Qu, Z.; Werhahn, O.; Ebert, V. Towards an Optical Gas Standard for Traceable Calibration-Free and Direct NO2 Concentration Measurements. Appl. Sci. 2021, 11, 5361. https://doi.org/10.3390/app11125361
Nwaboh JA, Qu Z, Werhahn O, Ebert V. Towards an Optical Gas Standard for Traceable Calibration-Free and Direct NO2 Concentration Measurements. Applied Sciences. 2021; 11(12):5361. https://doi.org/10.3390/app11125361
Chicago/Turabian StyleNwaboh, Javis A., Zhechao Qu, Olav Werhahn, and Volker Ebert. 2021. "Towards an Optical Gas Standard for Traceable Calibration-Free and Direct NO2 Concentration Measurements" Applied Sciences 11, no. 12: 5361. https://doi.org/10.3390/app11125361
APA StyleNwaboh, J. A., Qu, Z., Werhahn, O., & Ebert, V. (2021). Towards an Optical Gas Standard for Traceable Calibration-Free and Direct NO2 Concentration Measurements. Applied Sciences, 11(12), 5361. https://doi.org/10.3390/app11125361