Charge Carrier Transport in Van Der Waals Semiconductor InSe Intercalated with RbNO3 Probed by Direct Current Methods
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Transport Properties along the Layers
3.2. Conductivity Anisotropy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Duong, D.L.; Yun, S.J.; Lee, Y.H. van der Waals layered materials: Opportunities and challenges. ACS Nano 2017, 11, 11803–11830. [Google Scholar] [CrossRef] [PubMed]
- Di Bartolomeo, A. Emerging 2D materials and their van der Waals heterostructures. Nanomaterials 2020, 10, 579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef]
- Stark, M.S.; Kuntz, K.L.; Martens, S.J.; Warren, S.C. Intercalation of layered materials from bulk to 2D. Adv. Mater. 2019, 31, 1808213. [Google Scholar] [CrossRef] [PubMed]
- Rajapakse, M.; Karki, B.; Abu, U.O.; Pishgar, S.; Musa, M.R.K.; Riyadh, S.M.S.; Yu, M.; Sumanasekera, G.; Jasinski, J.B. Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. NPJ 2D Mater. Appl. 2021, 5, 30. [Google Scholar] [CrossRef]
- Kudrynskyi, Z.R.; Bhuiyan, M.A.; Makarovsky, O.; Greener, J.D.G.; Vdovin, E.E.; Kovalyuk, Z.D.; Cao, Y.; Mishchenko, A.; Novoselov, K.S.; Beton, P.H.; et al. Giant quantum hall plateau in graphene coupled to an InSe van der Waals crystal. Phys. Rev. Lett. 2017, 119, 157701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhuiyan, M.A.; Kudrynskyi, Z.R.; Mazumder, D.; Greener, J.D.G.; Makarovsky, O.; Mellor, C.J.; Vdovin, E.E.; Piot, B.A.; Lobanova, I.I.; Kovalyuk, Z.D.; et al. Photoquantum Hall effect and light-induced charge transfer at the interface of graphene/inse heterostructures. Adv. Funct. Mater. 2019, 29, 1805491. [Google Scholar] [CrossRef] [Green Version]
- Mudd, G.W.; Svatek, S.A.; Hague, L.; Makarovsky, O.; Kudrynskyi, Z.R.; Mellor, C.J.; Beton, P.H.; Eaves, L.; Novoselov, K.S.; Kovalyuk, Z.D.; et al. High broad-band photoresponsivity of mechanically formed InSe–graphene van der waals heterostructures. Adv. Mater. 2015, 27, 3760–3766. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, N.; Kudrynskyi, Z.R.; Smith, E.F.; Fay, M.W.; Makarovsky, O.; Kovalyuk, Z.D.; Eaves, L.; Beton, P.H.; Patanè, A. Engineering p − n junctions and bandgap tuning of InSe nanolayers by controlled oxidation. 2D Mater. 2017, 4, 025043. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Kudrynskyi, Z.R.; Fay, M.W.; Mudd, G.W.; Svatek, S.A.; Makarovsky, O.; Kovalyuk, Z.D.; Eaves, L.; Beton, P.H.; Patanè, A. Room temperature electroluminescence from mechanically formed van der Waals III–VI homojunctions and heterojunctions. Adv. Opt. Mater. 2014, 2, 1064–1069. [Google Scholar] [CrossRef] [Green Version]
- Velichko, A.V.; Kudrynskyi, Z.R.; Paola, D.M.D.; Makarovsky, O.; Kesaria, M.; Krier, A.; Sandall, I.C.; Tan, C.H.; Kovalyuk, Z.D.; Patanè, A. Highly-mismatched InAs/InSe heterojunction diodes. Appl. Phys. Lett. 2016, 109, 182115. [Google Scholar] [CrossRef] [Green Version]
- Kudrynskyi, Z.R.; Kovalyuk, Z.D. Photosensitive anisotype n-ZnSe/p-InSe and n-ZnSe/p-GaSe heterojunctions. Tech. Phys. 2014, 59, 1205–1208. [Google Scholar] [CrossRef]
- Kudrynskyi, Z.; Khomyak, V.; Katerynchuk, V.; Kovalyuk, M.; Netyaga, V.; Kushnir, B. Fabrication and characterization of photosensitive n-ZnO/p-InSe heterojunctions. Thin Solid Films 2015, 582, 253–257. [Google Scholar] [CrossRef]
- Ubrig, N.; Ponomarev, E.; Zultak, J.; Domaretskiy, D.; Zólyomi, V.; Terry, D.; Howarth, J.; Gutiérrez-Lezama, I.; Zhukov, A.; Kudrynskyi, Z.R.; et al. Design of van der Waals interfaces for broad-spectrum optoelectronics. Nat. Mater. 2020, 19, 299–304. [Google Scholar] [CrossRef]
- Kudrynskyi, Z.R.; Kerfoot, J.; Mazumder, D.; Greenaway, M.T.; Vdovin, E.E.; Makarovsky, O.; Kovalyuk, Z.D.; Eaves, L.; Beton, P.H.; Patanè, A. Resonant tunnelling into the two-dimensional subbands of InSe layers. Commun. Phys. 2020, 3, 16. [Google Scholar] [CrossRef]
- Bandurin, D.A.; Tyurnina, A.V.; Yu, G.L.; Mishchenko, A.; Zolyomi, V.; Morozov, S.V.; Kumar, R.K.; Gorbachev, R.V.; Kudrynskyi, Z.R.; Pezzini, S.; et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 2017, 12, 223–227. [Google Scholar] [CrossRef]
- Bakhtinov, A.P.; Vodopyanov, V.N.; Kudrynskyi, Z.R.; Kovalyuk, Z.D.; Netyaga, V.V.; Lytvyn, O.S. Nanocomposite structures grown by inserting ionic salt RbNO3 into van der Waals gaps of III−VI compound layered semiconductors. Solid State Ionics 2015, 273, 59–65. [Google Scholar] [CrossRef]
- Bakhtinov, A.P.; Vodopyanov, V.N.; Ivanov, V.I.; Tkachuk, I.G.; Netyaga, V.V.; Savitskii, P.I.; Kovalyuk, Z.D. Impedance and photosensitivity spectra of nanocomposite structures based on layered semiconductor InSe and ionic salt RbNO3. Phys. Status Solidi A 2018, 24, 1800460. [Google Scholar] [CrossRef]
- Kudrynskyi, Z.R.; Netyaga, V.V. Nanocomposite material based on GaSe and InSe layered crystals intercalated by RbNO3 ferroelectric. J. Nano Electron. Phys. 2013, 5, 03028. [Google Scholar]
- Kovalyuk, Z.D.; Boledzyuk, V.B.; Pyrlya, M.M.; Potsiluiko, R.L.; Netyaga, V.V. The effect of the thermal introduction of NaNO2 on the optical properties of indium and gallium monoselenides. Phys. Chem. Solid State 2016, 17, 544–547. [Google Scholar] [CrossRef] [Green Version]
- Bakhtinov, A.P.; Vodopyanov, V.N.; Kovalyuk, Z.D.; Netyaga, V.V.; Konoplyanko, D.Y. Carrier transport in layered semiconductor (p-GaSe)–ferroelectric (KNO3) composite nanostructures. Semiconductors 2011, 45, 338–349. [Google Scholar] [CrossRef]
- Grigorchak, I.I.; Netyaga, V.V.; Kovalyuk, Z.D. On some physical properties of InSe and GaSe semiconducting crystals intercalated by ferroelectrics. J. Phys. Condens. Matter. 1997, 9, L191–L195. [Google Scholar] [CrossRef]
- Pomer, F.; Bonet, X.; Segura, A.; Chevy, A. Electrical conductivity anisotropy in tin-doped n-type indium selenide. Phys. Status Solidi B 1988, 145, 261–268. [Google Scholar] [CrossRef]
- Pomer, F.; Navasquillo, J. A method for measuring the resistivity of a layered semiconductor perpendicular to the layers. Phys. Status Solidi A 1988, 110, 585–592. [Google Scholar] [CrossRef]
- Martinez-Pastor, J.; Segura, A.; Chevy, A. High temperature behavior of impurities and dimensionality of the charge transport in not purposely doped and tin doped indium selenide. J. Appl. Phys. 1993, 74, 3231–3237. [Google Scholar] [CrossRef] [Green Version]
- Savitskii, P.I.; Mintyanskii, I.V.; Kovalyuk, Z.D. Annealing effect on conductivity anisotropy in indium selenide single crystals. Phys. Status Solidi A 1996, 155, 451–460. [Google Scholar] [CrossRef]
- Riera, J.; Segura, A.; Chevy, A. Electrical resistivity anisotropy of silicon-doped n-indium selenide. Phys. Status Solidi A 1993, 136, K47–K50. [Google Scholar] [CrossRef]
- Segura, A.; Wünstel, K.; Chevy, A. Investigation of impurity levels in n-type indium selenide by means of Hall effect and deep level transient spectroscopy. Appl. Phys. A 1983, 31, 139–145. [Google Scholar] [CrossRef]
- Fivaz, R.C. Dimensionality and the electron-phonon interaction in layer structures. Nuovo Cim. B 1969, 63, 10–28. [Google Scholar] [CrossRef]
- Schmid, P. Electron-lattice interaction in layered semiconductors. Nuovo Cim. B 1974, 21, 258–270. [Google Scholar] [CrossRef]
- Essaleh, L.; Wasim, S.M.; Galibert, J. Effect of impurity band conduction on the electrical characteristics of n-type CuInSe2. J. Appl. Phys. 2001, 90, 3993–3997. [Google Scholar] [CrossRef]
- Laiho, L.; Lashkul, A.V.; Lahderanta, E.; Nedeoglo, D.D.; Nedeoglo, N.D.; Shakhov, M.A. Shallow donor states of Ag impurity in ZnSe single crystals. Semicond. Sci. Technol. 2006, 21, 654–660. [Google Scholar] [CrossRef]
- Arushanov, E.; Schön, J.H.; Matsushita, H.; Takizawa, T. Impurity band in p-type CuInSe2. Phys. Status Solidi A 1999, 176, 1009–1016. [Google Scholar] [CrossRef]
- Gomes da Costa, P.; Dandrea, R.G.; Wallis, R.F.; Balkanski, M. First-principle study of electronic structure of γ-InSe and β-InSe. Phys. Rev. B 1993, 48, 14135–14141. [Google Scholar] [CrossRef]
- Segura, A.; Martinez-Tomas, M.C.; Mari, B.; Casanovas, A.; Chevy, A. Acceptor levels in indium selenide. An investigation by means of the Hall effect, deep-level-transient spectroscopy and photoluminescence. Appl. Phys. A 1987, 44, 249–260. [Google Scholar] [CrossRef]
- Mintyanskii, I.V.; Savitskii, P.I.; Kovalyuk, Z.D. Two-band conduction in electron-irradiated n-InSe single crystals. Phys. Status Solidi B 2015, 252, 346–356. [Google Scholar] [CrossRef]
- Kovalyuk, Z.D.; Mintyanskii, I.V.; Savitskii, P.I. Effect of electron irradiation on conductivity anisotropy in n-InSe. J. Nano Electron. Phys. 2017, 9, 06013. [Google Scholar] [CrossRef]
- Mintyanskii, I.V.; Savitskii, P.I.; Kovalyuk, Z.D.; Maslyuk, V.T.; Megela, I.G. Effect of the electron irradiation on electrical properties of n-InSe and their anisotropy. Nuclear Phys. At. Energy 2018, 19, 136–144. [Google Scholar] [CrossRef]
- Mintyanskii, I.V.; Savitskii, P.I.; Kovalyuk, Z.D. Two-dimensionalization of electron gas in n-InSe crystals induced by electron irradiation. Acta Phys. Pol. A 2020, 137, 1031–1036. [Google Scholar] [CrossRef]
- Emel’yanenko, O.V.; Lagunova, T.S.; Nasledov, D.N.; Talalkin, G.N. Formation and properties of impurity band in n-GaAs. Sov. Phys. Solid State 1965, 7, 1063–1070. [Google Scholar] [CrossRef]
- Kress-Rogers, E.; Nicholas, R.J.; Portal, J.C.; Chevy, A. Cyclotron resonance studies on bulk and two-dimensional conduction electrons in InSe. Solid State Communs. 1982, 44, 379–383. [Google Scholar] [CrossRef]
- Riera, J.; Segura, A.; Chevy, A. Transport properties of silicon doped n-indium selenide. Appl. Phys. A 1992, 54, 428–430. [Google Scholar] [CrossRef]
Sample | σ⊥C (Ohm−1·cm−1) | n (cm−3) | μ⊥C (cm·V−1·s−1) | |||
---|---|---|---|---|---|---|
80 K | 300 K | 80 K | 300 K | 80 K | 300 K | |
1 | 6.10 | 1.121 | 3.85 × 1015 | 7.61 × 1015 | 9905 | 919 |
2 | 0.0837 | 0.142 | 2.08 × 1015 | 1.61 × 1015 | 251.3 | 549 |
3 | 0.0313 | 0.0487 | 2.00 × 1015 | 8.04 × 1014 | 97.9 | 378 |
4 | 5.91 | 1.328 | 5.93 × 1015 | 9.60 × 1015 | 6226 | 864 |
5 | 4.72 | 1.531 | 6.66 × 1015 | 1.14 × 1016 | 4970 | 836 |
Sample | σ‖C (Ohm−1·cm−1) | σ⊥C/σ‖C | ΔEb (meV) | A | ||
---|---|---|---|---|---|---|
80 K | 300 K | 80 K | 300 K | |||
1 | 0.09375 | 0.01826 | 65.1 | 62.1 | 7.6 | 21.7 |
2 | 1.183 × 10−4 | 9.88 × 10−4 | 708 | 154 | 15.3 | 77.5 |
3 | 1.218 × 10−5 | 1.964 × 10−4 | 2575 | 248 | 23.1 | 97.0 |
4 | 0.1182 | 0.0387 | 50.0 | 34.3 | 4.6 | 25.9 |
5 | 0.1367 | 0.0549 | 38.8 | 27.9 | 3.5 | 234 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudrynskyi, Z.R.; Mintyanskii, I.V.; Savitskii, P.I.; Kovalyuk, Z.D. Charge Carrier Transport in Van Der Waals Semiconductor InSe Intercalated with RbNO3 Probed by Direct Current Methods. Appl. Sci. 2021, 11, 5181. https://doi.org/10.3390/app11115181
Kudrynskyi ZR, Mintyanskii IV, Savitskii PI, Kovalyuk ZD. Charge Carrier Transport in Van Der Waals Semiconductor InSe Intercalated with RbNO3 Probed by Direct Current Methods. Applied Sciences. 2021; 11(11):5181. https://doi.org/10.3390/app11115181
Chicago/Turabian StyleKudrynskyi, Zakhar R., Illya V. Mintyanskii, Petro I. Savitskii, and Zakhar D. Kovalyuk. 2021. "Charge Carrier Transport in Van Der Waals Semiconductor InSe Intercalated with RbNO3 Probed by Direct Current Methods" Applied Sciences 11, no. 11: 5181. https://doi.org/10.3390/app11115181
APA StyleKudrynskyi, Z. R., Mintyanskii, I. V., Savitskii, P. I., & Kovalyuk, Z. D. (2021). Charge Carrier Transport in Van Der Waals Semiconductor InSe Intercalated with RbNO3 Probed by Direct Current Methods. Applied Sciences, 11(11), 5181. https://doi.org/10.3390/app11115181