Development of a Drone’s Vibration, Shock, and Atmospheric Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drones and the Data Logger
2.2. Characterization Methods
2.2.1. Consolidated Vibration PSD Spectrum
2.2.2. Grms Histogram
2.2.3. Shock Respond Spectrum (SRS)
3. Results and Discussion
3.1. Consolidated PSD Vibration Spectrum
3.2. Grms Values
3.3. Shock
3.4. Atmospheric Data
4. Conclusions
5. Recommendations
- As UAVs become more practical as a mode to deliver packages to consumers, further work to characterize this transport environment is critical for product and package engineers. The field measured levels can be incorporated into package test protocols that can be used to aid in the development of packaged product systems passing through this distribution network.
- Further field measurement using actual products would aid in understanding the effects of this transport environment on product quality. The focus should be around areas related to vibration and shock response.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turban, E.; Whiteside, J.; King, D.; Outland, J. Electronic Commerce Payment Systems and Order Fulfillment. In Introduction to Electronic Commerce and Social Commerce; Turban, E., Whiteside, J., King, D., Outland, J., Eds.; Springer Texts in Business and Economics; Springer International Publishing: Cham, Germany, 2017; pp. 331–380. ISBN 978-3-319-50091-1. [Google Scholar]
- Mercedes-Benz: Vans & Drones. Available online: https://www.mercedes-benz.com/en/vehicles/transporter/vans-drones-in-zurich/ (accessed on 2 February 2021).
- Chan, T.F. One of China’s Biggest Online Retailers Plans to Build Nearly 200 Drone Airports to Bring e-Commerce to Rural China. Available online: https://www.businessinsider.com/chinese-online-retailer-is-building-200-drone-airports-rural-china-2017-12 (accessed on 2 February 2021).
- Riley, C. Alibaba Is Using Drones to Deliver Tea. Available online: https://money.cnn.com/2015/02/04/technology/alibaba-delivery-drones/index.html (accessed on 2 February 2021).
- Iceland Expands Food Delivery by Drone in Reykjavik. BBC News. 13 June 2018. Available online: https://www.bbc.com/news/technology-44466353 (accessed on 1 April 2021).
- Heutger, M.; Kückelhaus, M. Unmanned Aerial Vehicles in Logistics: A DHL Perspective on Implications and Use Cases for the Logistics Industry; DHL Customer Solutions & Innovation: Troisdorf, Germany, 2014. [Google Scholar]
- Oakey, A.; Waters, T.; Zhu, W.; Royall, P.G.; Cherrett, T.; Courtney, P.; Majoe, D.; Jelev, N. Quantifying the Effects of Vibration on Medicines in Transit Caused by Fixed-Wing and Multi-Copter Drones. Drones 2021, 5, 22. [Google Scholar] [CrossRef]
- Verbeke, J.; Debruyne, S. Vibration analysis of a UAV multirotor frame. In Proceedings of the of ISMA 2016 International Conference on Noise and Vibration Engineering, Leuven, Belgium, 9–21 September 2016; pp. 2329–2337. [Google Scholar]
- Park, J.; Choi, S.; Jung, H.M. Measurement and Analysis of Vibration Levels for Truck Transport Environment in Korea. Appl. Sci. 2020, 10, 6754. [Google Scholar] [CrossRef]
- Singh, J.; Singh, S.P.; Joneson, E. Measurement and Analysis of US Truck Vibration for Leaf Spring and Air Ride Suspensions, and Development of Tests to Simulate These Conditions. Packag. Technol. Sci. 2006, 19, 309–323. [Google Scholar] [CrossRef]
- Singh, S.P.; Joneson, E.; Singh, J.; Grewal, G. Dynamic Analysis of Less-than-Truckload Shipments and Test Method to Simulate This Environment. Packag. Technol. Sci. 2008, 21, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Böröcz, P.; Singh, S.P. Measurement and Analysis of Vibration Levels in Rail Transport in Central Europe. Packag. Technol. Sci. 2017, 30, 361–371. [Google Scholar] [CrossRef]
- Chonhenchob, V.; Singh, S.P.; Singh, J.J.; Sittipod, S.; Swasdee, D.; Pratheepthinthong, S. Measurement and Analysis of Truck and Rail Vibration Levels in Thailand. Packag. Technol. Sci. 2010, 23, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Ostrem, F.E.; Godshall, W.D. An Assessment of the Common Carrier Shipping Environment; Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1979. [Google Scholar]
- Trost, T. Mechanical Stresses on Products during Air Cargo Transportation. Packag. Technol. Sci. 1988, 1, 137–155. [Google Scholar] [CrossRef]
- Wallin, B. Developing a Random Vibration Profile Standard. In Proceedings of the 2007 IAPRI Symposium, Windsor, UK, 3–5 September 2007. [Google Scholar]
- Dunno, K.; Batt, G. Analysis of In-flight Vibration of a Twin-engine Turbo Propeller Aircraft. Packag. Technol. Sci. Int. J. 2009, 22, 479–485. [Google Scholar] [CrossRef]
- ASTM International. D4169-16 Standard Practice for Performance Testing of Shipping Containers and Systems; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- ISTA. Project 4AB: Packaged-Products for Shipment in Known Distribution Channels; ISTA: East Lansing, MI, USA, 2009. [Google Scholar]
- Ge, C.; Pan, L. Vibration Damage Rate Curves for Quantifying Abrasion of Printed Packaging in Accelerated Random Vibration Test. Packag. Technol. Sci. 2018, 31, 71–81. [Google Scholar] [CrossRef]
- Paternoster, A.; Vanlanduit, S.; Springael, J.; Braet, J. Measurement and Analysis of Vibration and Shock Levels for Truck Transport in Belgium with Respect to Packaged Beer during Transit. Food Packag. Shelf Life 2018, 15, 134–143. [Google Scholar] [CrossRef]
- Huang, H.; Savkin, A.V.; Huang, C. Scheduling of a Parcel Delivery System Consisting of an Aerial Drone Interacting with Public Transportation Vehicles. Sensors 2020, 20, 2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irvine, T. An Introduction to the Shock Response Spectrum (Revision S). 2012. Available online: https://www.vibrationdata.com/tutorials2/srs_intr.pdf (accessed on 1 April 2021).
- Tuma, J.; Koci, P. Calculation of a Shock Response Spectrum. In Proceedings of the 2011 12th International Carpathian Control Conference (ICCC), Velke Karlovice, Czech Republic, 25–28 May 2011; pp. 404–409. [Google Scholar]
- Ansari, A.R.; Novinzadeh, A.R.B. Designing a Control System for an Airplane Wing Flutter Employing Gas Actuators. Int. J. Aerosp. Eng. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunno, K. Analysis of In-Flight Vibration of a Single Engine Propeller Aircraft. Int. J. Adv. Packag. Technol. 2014, 2, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, D.; Young, D. Protective Packaging for Distribution; DEStech Publications, Inc.: Lancaster, PA, USA, 2011. [Google Scholar]
- Singh, S.P.; Singh, J.; Stallings, J.; Burgess, G.; Saha, K. Measurement and Analysis of Temperature and Pressure in High Altitude Air Shipments. Packag. Technol. Sci. 2010, 23, 35–46. [Google Scholar] [CrossRef] [Green Version]
Model Name | DJI Matrice 600 Pro | DJI Matrice 100 |
---|---|---|
Number of rotors | 6 | 4 |
Drone Weight | 22.05 lbs. (10 kg) | 5.35 lbs. (2.43 kg) |
Payload weight | 34.17 lbs. (15.5 kg) | 7.93 lbs. (3.6 kg) |
Propellers | 2 Blade | 2 Blade |
Motor model | DJI 6010 | DJI 3510 |
Event Type | Event Trigger Threshold |
---|---|
Temperature | 26.7 °C |
Humidity | 50% RH |
Vibration | 0.09 g |
Shock | 4.48 g |
Pressure | 101 KPa |
Light | 500 Clear |
Frequency and PSD breakpoints for DJI Matrice 600 Pro top | |||||
X-Axis (Lateral) | Y-Axis (Longitudinal) | Z-Axis (Vertical) | |||
Frequency (Hz) | PSD (g2/Hz) | Frequency (Hz) | PSD (g2/Hz) | Frequency (Hz) | PSD (g2/Hz) |
1.56 | 0.000264 | 1.56 | 0.000291 | 1.56 | 0.000749 |
3.13 | 0.000335 | 7.81 | 0.000400 | 5.47 | 0.000921 |
77.34 | 0.000481 | 14.06 | 0.000483 | 13.28 | 0.001013 |
89.84 | 0.001862 | 28.13 | 0.000332 | 65.63 | 0.000442 |
96.09 | 0.003587 | 71.88 | 0.000319 | 78.13 | 0.002540 |
150.00 | 0.005751 | 96.88 | 0.003497 | 96.88 | 0.032923 |
164.00 | 0.060750 | 145.31 | 0.026648 | 167.97 | 0.021617 |
175.00 | 0.140900 | 160.15 | 0.032923 | 175.00 | 0.038123 |
179.68 | 0.165814 | 178.13 | 0.030444 | 210.94 | 0.002561 |
210.94 | 0.007295 | 210.94 | 0.011054 | ||
Frequency and PSD breakpoints for DJI Matrice 600 Pro bottom | |||||
X-Axis (Lateral) | Y-Axis (Longitudinal) | Z-Axis (Vertical) | |||
Frequency (Hz) | PSD (g2/Hz) | Frequency (Hz) | PSD (g2/Hz) | Frequency (Hz) | PSD (g2/Hz) |
6.25 | 0.000251 | 6.25 | 0.000708 | 3.125 | 0.002264 |
10.16 | 0.000497 | 11.72 | 0.000509 | 9.375 | 0.001788 |
21.88 | 0.000773 | 21.09 | 0.000564 | 20.31 | 0.001160 |
80.47 | 0.001793 | 52.34 | 0.001130 | 92.96 | 0.001107 |
97.66 | 0.011633 | 99.23 | 0.004898 | 110.94 | 0.001150 |
167.19 | 0.007783 | 171.88 | 0.009151 | 173.44 | 0.004891 |
178.13 | 0.017958 | 180.47 | 0.017030 | 178.13 | 0.006435 |
181.25 | 0.024818 | 188.28 | 0.011457 | ||
210.94 | 0.001084 |
Frequency and PSD breakpoints for DJI Matrice 100 top | |||||
X-Axis (Lateral) | Y-Axis (Longitudinal) | Z-Axis (Vertical) | |||
Frequency (Hz) | PSD (g2/Hz) | Frequency (Hz) | PSD (g2/Hz) | Frequency (Hz) | PSD (g2/Hz) |
1.56 | 0.000196 | 1.56 | 0.000095 | 1.56 | 0.002401 |
7.03 | 0.000203 | 9.38 | 0.000172 | 6.25 | 0.001030 |
14.84 | 0.000282 | 19.53 | 0.000266 | 9.38 | 0.001658 |
19.53 | 0.000236 | 27.34 | 0.000360 | 44.53 | 0.001255 |
25.78 | 0.000331 | 81.25 | 0.001338 | 91.41 | 0.001667 |
72.66 | 0.000432 | 96.88 | 0.002042 | 117.97 | 0.002057 |
98.44 | 0.012128 | 164.06 | 0.016571 | 169.53 | 0.003886 |
165.63 | 0.024107 | 194.53 | 0.009995 | ||
189.84 | 0.013427 | ||||
Frequency and PSD breakpoints for DJI Matrice 100 bottom | |||||
X-Axis (Lateral) | Y-Axis (Longitudinal) | Z-Axis (Vertical) | |||
Frequency (Hz) | PSD (g2/Hz) | Frequency (Hz) | PSD (g2/Hz) | Frequency (Hz) | PSD (g2/Hz) |
3.13 | 0.000377 | 1.56 | 0.001820 | 1.56 | 0.000214 |
8.59 | 0.000572 | 5.47 | 0.001953 | 3.13 | 0.000316 |
60.15 | 0.004622 | 19.53 | 0.002265 | 9.38 | 0.000325 |
96.88 | 0.005804 | 82.03 | 0.002659 | 79.69 | 0.003400 |
161.72 | 0.058768 | 120.31 | 0.002689 | 100.78 | 0.004283 |
175.00 | 0.095141 | 139.84 | 0.019277 | 121.09 | 0.043357 |
185.15 | 0.029264 | 144.53 | 0.017011 | 136.72 | 0.021441 |
159.38 | 0.049592 | 144.53 | 0.017361 | ||
167.19 | 0.034629 | 175.00 | 0.056834 |
Drone | DJI Matrice 600 Pro | DJI Matrice 100 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Data logger | Top | Bottom | Top | Bottom | ||||||||
Axis | X | Y | Z | X | Y | Z | X | Y | Z | X | Y | Z |
Overall Grms | 1.6 | 1.01 | 0.95 | 0.78 | 0.65 | 0.54 | 0.66 | 0.49 | 0.53 | 1.09 | 0.97 | 0.99 |
No. of events | 67.8% | 64.5% | 70.2% | 68.9% | 59.2% | 68.8% | 70.6% | 73.5% | 70.2% | 72.9% | 70.3% | 78.3% |
Range of the Grms | 0.42–1.03 | 0.36–0.72 | 0.33–0.65 | 0.25–0.50 | 0.21–0.42 | 0.20–0.39 | 0.15–0.44 | 0.12–0.33 | 0.15–0.43 | 0.24–0.70 | 0.21–0.62 | 0.23–0.66 |
DJI Matrice 600 Pro Shock Values above the Average | ||||
---|---|---|---|---|
Max. X | Max. Y | Max. Z | Location of Data Logger | SRS Frequency (Hz) |
−3.20 | −7.04 | 3.84 | Top data logger | 171.85 |
−3.20 | −6.40 | 3.20 | Top data logger | 171.85 |
−3.20 | −7.04 | 3.84 | Top data logger | 182.01 |
−3.20 | −6.40 | 3.84 | Top data logger | 182.01 |
DJI Matrice 100 Pro shock values above the average | ||||
−2.56 | −12.80 | −3.20 | Bottom data logger | 182.67 |
−2.56 | −12.16 | 3.20 | Bottom data logger | 182.01 |
−4.48 | −14.08 | 3.84 | Bottom data logger | 171.85 |
−4.48 | −10.88 | 3.84 | Bottom data logger | 182.01 |
−3.20 | −10.88 | 3.84 | Bottom data logger | 182.01 |
−3.84 | −10.88 | 3.84 | Bottom data logger | 182.01 |
−3.84 | −10.24 | 3.84 | Bottom data logger | 171.85 |
−3.20 | −11.52 | 3.84 | Bottom data logger | 171.85 |
−3.20 | −10.24 | 3.84 | Bottom data logger | 182.01 |
−3.84 | −10.24 | 3.84 | Bottom data logger | 136.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, C.; Dunno, K.; Singh, M.A.; Yuan, L.; Lu, L.-X. Development of a Drone’s Vibration, Shock, and Atmospheric Profiles. Appl. Sci. 2021, 11, 5176. https://doi.org/10.3390/app11115176
Ge C, Dunno K, Singh MA, Yuan L, Lu L-X. Development of a Drone’s Vibration, Shock, and Atmospheric Profiles. Applied Sciences. 2021; 11(11):5176. https://doi.org/10.3390/app11115176
Chicago/Turabian StyleGe, Changfeng, Kyle Dunno, Mukul Anand Singh, Long Yuan, and Li-Xin Lu. 2021. "Development of a Drone’s Vibration, Shock, and Atmospheric Profiles" Applied Sciences 11, no. 11: 5176. https://doi.org/10.3390/app11115176
APA StyleGe, C., Dunno, K., Singh, M. A., Yuan, L., & Lu, L.-X. (2021). Development of a Drone’s Vibration, Shock, and Atmospheric Profiles. Applied Sciences, 11(11), 5176. https://doi.org/10.3390/app11115176