Nonlinear and Linear Equation of Gas Diffusion in Coal—Theory and Applications
Abstract
:1. Introduction
2. Assumptions of the Gas Diffusion Equation in a Granular Sorbent
- is the density of free gas (kg/m3);
- is the density of sorbed gas (kg/m3);
- is the mass of free gas (kg);
- is the mass of sorbed gas (kg);
- is the grain volume (m3);
- is the porosity (-).
- p is the gas pressure (Pa);
- (m2/s2);
- R is the universal gas constant (J/(mol·K));
- T is the temperature (K);
- M is the molecular mass of gas (kg/mol).
- is Henry’s coefficient (s2/m2).
- is the grain mass (kg);
- is the temperature under standard conditions (K);
- is the pressure under standard conditions (Pa);
- is the coal density (kg/m3);
- is the amount of sorbed gas (m3/kg);
- is the constant value (kg2/m6).
3. Gas Diffusion Equation in Sorbent Grains
- is the diffusion process rate (m/s).
- is the permeability coefficient (m2);
- is the gas dynamic viscosity (N·s/m2).
- is the diffusion coefficient (m2/s).
- is the density of gas after the time period in which 80% of the sorbed gas was released.
- (m2/s).
- is the average gas density inside a grain.
- is the amount of gas released at the final desorption stage.
- is the amount of gas released at the initial desorption stage.
- is the time after which the amount of gas being released reaches 0.2 of the maximum value (s).
- —is the time after which the amount of gas being released reaches 0.5 of the maximum value [s].
4. Numerical Solution of the Nonlinear Diffusion Equation
- is the parameter related to the stability of the solution;
- is the step of the spatial grid (m);
- is the step of the temporal grid (s).
5. Comparison of the Measurement Results with the Solution of the Nonlinear Diffusion Coefficient
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sevenster, P.G. Diffusion of gases from coal. Fuel 1959, 38, 403–418. [Google Scholar]
- Ceglarska-Stefańska, G.; Zarębska, K. Sorption of carbon dioxide–methane mixtures. Int. J. Coal Geol. 2005, 62, 211–222. [Google Scholar] [CrossRef]
- Majewska, Z.; Ceglarska-Stefańska, G.; Majewski, S.; Ziętek, J. Binary gas sorption/desorption experiments on a bituminous coal: Simultaneous measurements on sorption kinetics, volumetric strain and acoustic emission. Int. J. Coal Geol. 2009, 77, 90–102. [Google Scholar] [CrossRef]
- Kudasik, M. The manometric sorptomat—An innovative volumetric instrument for sorption measurements performed under isobaric conditions. Meas. Sci. Technol. 2016, 27, 035903. [Google Scholar] [CrossRef]
- Gawor, M.; Skoczylas, N. Sorption Rate of Carbon Dioxide on Coal. Transp. Porous Media 2014, 101, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Skoczylas, N. Analyzing the parameters of the coal-gas system by means of a low-cost device based on a flow meter. Adsorpt. Sci. Technol. 2015, 33, 769–782. [Google Scholar] [CrossRef] [Green Version]
- Skoczylas, N.; Topolnicki, J. The coal-gas system—The effective diffusion coefficient. Int. J. Oil Gas Coal Technol. 2016, 12, 412–424. [Google Scholar] [CrossRef]
- Walawska, B.; Szymanek, A.; Pajdak, A.; Szymanek, P. Impact of decomposition temperature on the surface area of sodium bicarbonate. Przemysł Chem. 2012, 91, 1049–1052. [Google Scholar]
- Cai, Y.; Liu, D.; Pan, Z.; Yao, Y.; Li, J.; Qiu, Y. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China. Fuel 2013, 103, 258–268. [Google Scholar] [CrossRef]
- Hou, Y.; He, S.; Yi, J.; Zhang, B.; Chen, X.; Wang, Y.; Zhang, J.; Cheng, C. Effect of pore structure on methane sorption potential of shales. Pet. Explor. Dev. 2014, 41, 272–281. [Google Scholar] [CrossRef]
- Liu, H.; Mou, J.; Cheng, Y. Impact of pore structure on gas adsorption and diffusion dynamics for long-flame coal. J. Nat. Gas Sci. Eng. 2015, 22, 203–213. [Google Scholar] [CrossRef]
- Skoczylas, N.; Pajdak, A.; Kozieł, K.; Teixeira Palla Braga, L. Methane Emission During Gas and Rock Outburst on the Basis of the Unipore Model. Energies 2019, 12, 1999. [Google Scholar]
- Wierzbicki, M.; Pajdak, A.; Baran, P.; Zarębska, K. Isosteric heat of sorption of methane on selected hard coals. Przem. Chem. 2019, 98, 625–629. [Google Scholar]
- Skoczylas, N.; Pajdak, A.; Kudasik, M.; Teixeira Palla Braga, L. CH4 and CO2 sorption and diffusion carried out in various temperatures on hard coal samples of various degrees of coalification. J. Nat. Gas Sci. Eng. 2020, 81, 103449. [Google Scholar] [CrossRef]
- Walentek, A.; Wierzbiński, K. Influence of rock geomechanical parameters on increased longwall absolute methane emission rate forecasting accuracy. Arch. Min. Sci. 2020, 65, 641–664. [Google Scholar]
- Kudasik, M. Investigating Permeability of Coal Samples of Various Porosities under Stress Conditions. Energies 2019, 12, 762. [Google Scholar] [CrossRef] [Green Version]
- Dake, L.P. Fundamentals of Reservoir Engineering. No. 8. Amsterdam: Developments in Petroleum Science; Elsevier Science BV: New York, NY, USA, 1978. [Google Scholar]
- Fick, A. Uber diffusion. Ann. Der Phys. Und Chem. 1855, 94, 59–96. [Google Scholar] [CrossRef]
- Topolnicki, J.; Kudasik, M.; Dutka, B. Simplified model of the CO2/CH4 exchange sorption process. Fuel Process. Technol. 2013, 113, 67–74. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, Y.; Zhou, H.; Guo, P.; An, F.; Chen, H. A Mathematical Model of Coupled Gas Flow and Coal Deformation with Gas Diffusion and Klinkenberg Effects. Rock Mech. Rock Eng. 2015, 48, 1163–1180. [Google Scholar] [CrossRef]
- Wierzbicki, M.; Skoczylas, N.; Kudasik, M. The use of a unipore diffusion model to describe the kinetics of methane release from coal spoil in the longwall environment. Studia Geotech. Et Mech. 2017, 39, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Ren, T.; Qi, Q.; Lin, J.; Liu, Q.; Zhang, J. Determining the diffusion coefficient of gas diffusion in coal: Development of numerical solution. Fuel 2017, 196, 47–58. [Google Scholar] [CrossRef]
- Skoczylas, N.; Kudasik, M.; Topolnicki, J.; Oleszko, K.; Młynarczuk, M. Model studies on saturation of a coal sorbent with gas taking into account the geometry of spatial grains. Chem. Ind. 2018, 92, 272–276. [Google Scholar]
- Liu, P.; Qin, P.; Liu, S.; Hao, Y. Non-linear gas desorption and transport behavior in coal matrix: Experiments and numerical modeling. Fuel 2018, 214, 1–13. [Google Scholar] [CrossRef]
- Liu, A.; Liu, P.; Liu, S. Gas diffusion coefficient estimation of coal: A dimensionless numerical method and its experimental validation. Int. J. Heat Mass Transf. 2020, 162, 120336. [Google Scholar] [CrossRef]
- Lanetc, Z.; Zhuravljov, A.; Jing, R.; Armstrong, R.T.; Mostaghimi, P. Coupling of transient matrix diffusion and pore network models for gas flow in coal. J. Nat. Gas Sci. Eng. 2021, 88, 103741. [Google Scholar] [CrossRef]
- Ettinger, J.L. Solubility of Methane Contained in Coal Deposits. Arch. Min. Sci. 1990, 33, 35. [Google Scholar]
- Skoczylas, N. Fast evaluation of the coalbed methane content of coal viewed as an element leading to improvement in exploitation conditions. Miner. Resour. Manag. 2016, 32, 153–174. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: London, UK, 1975. [Google Scholar]
- Timofiejew, D.P. Adsorptionskinetik; VEB: Leipzig, Germany, 1967. [Google Scholar]
- Skoczylas, N.; Pajdak, A.; Młynarczuk, M. CO2 Adsorption–Desorption Kinetics from the Plane Sheet of Hard Coal and Associated Shrinkage of the Material. Energies 2019, 12, 4013. [Google Scholar] [CrossRef] [Green Version]
- Mastalerz, M.; Gluskoter, H.; Rupp, J. Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana, USA. Int. J. Coal Geol. 2004, 60, 43–55. [Google Scholar] [CrossRef]
- Baran, P.; Cygankiewicz, J.; Zarebska, K. Carbon dioxide sorption on polish ortholignite coal in low and elevated pressure. J. CO2 Util. 2013, 3–4, 44–48. [Google Scholar] [CrossRef]
- Czerw, K.; Zarebska, K.; Buczek, B.; Baran, P. Kinetic models assessment for swelling of coal induced by methane and carbon dioxide sorption. Adsorpt. J. Int. Adsorpt. Soc. 2016, 22, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Kudasik, M.; Skoczylas, N. Balancing the amount and composition of gas contained in the pore space of cupriferous rocks. Environ. Earth Sci. 2018, 77, 135. [Google Scholar] [CrossRef] [Green Version]
- Rudzinski, W.; Everet, D. Adsorption of Gases on Heterogeneous Surfaces, 1st ed.; Academic Press: London, UK, 1992. [Google Scholar]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids, 2nd ed.; Oxford University Press: Oxford, UK, 1959. [Google Scholar]
- Jacobs, M.H. Diffusion Processes; Springer: Berlin/Heidelberg, Germany, 1935. [Google Scholar]
- Wierzbicki, M.; Skoczylas, N. The Outburst Risk as a Function of the Methane Capacity and Firmness of a Coal Seam. Arch. Min. Sci. 2014, 59, 1023–1031. [Google Scholar] [CrossRef] [Green Version]
- Kudasik, M. Results of comparative sorption studies of the coal-methane system carried out by means of an original volumetric device and a reference gravimetric instrument. Adsorpt. J. Int. Adsorpt. Soc. 2017, 23, 613–626. [Google Scholar] [CrossRef]
Grain Size (mm) | Equivalent Grain Size (mm) | Sorption Capacity (cm3/g) | (s) | (s) | (m2/s) | (m2/s) |
---|---|---|---|---|---|---|
25–32 | 14.1 | 9.81 | 0.33 | 65 | 16.5 | 2.7 |
63–72 | 33.6 | 9.95 | 1.08 | 340 | 32.1 | 2.9 |
90–100 | 47.4 | 9.90 | 3.03 | 964 | 23.3 | 2.4 |
200–250 | 111.6 | 9.78 | 27.7 | 4520 | 12.6 | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawor, M.; Skoczylas, N.; Pajdak, A.; Kudasik, M. Nonlinear and Linear Equation of Gas Diffusion in Coal—Theory and Applications. Appl. Sci. 2021, 11, 5130. https://doi.org/10.3390/app11115130
Gawor M, Skoczylas N, Pajdak A, Kudasik M. Nonlinear and Linear Equation of Gas Diffusion in Coal—Theory and Applications. Applied Sciences. 2021; 11(11):5130. https://doi.org/10.3390/app11115130
Chicago/Turabian StyleGawor, Marek, Norbert Skoczylas, Anna Pajdak, and Mateusz Kudasik. 2021. "Nonlinear and Linear Equation of Gas Diffusion in Coal—Theory and Applications" Applied Sciences 11, no. 11: 5130. https://doi.org/10.3390/app11115130
APA StyleGawor, M., Skoczylas, N., Pajdak, A., & Kudasik, M. (2021). Nonlinear and Linear Equation of Gas Diffusion in Coal—Theory and Applications. Applied Sciences, 11(11), 5130. https://doi.org/10.3390/app11115130