Olive Mill and Olive Pomace Evaporation Pond’s By-Products: Toxic Level Determination and Role of Indigenous Microbiota in Toxicity Alleviation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site Description
2.2. Heavy Metal Analysis of OMW Samples Using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)
2.3. Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS) Analysis of OMW and OMP Extracted Samples
2.4. Microbial DNA Extraction from OMW and OMP Samples, PCR Amplification and Metagenomics Analysis of Uncultivable Bacteria and Fungi
3. Results
3.1. Effects of the Disposal of OMW in the Evaporative Ponds on the Existing Fauna and Flora
3.2. Heavy Metals Concentrations in OMW Samples
3.3. LC-HRMS Analysis of Secondary Metabolites in OMW and OMP
3.4. Genus Level and Metagenomics Analysis of Indigenous Bacterial Communities in OMW and OMP Samples
3.5. Genus Level and Metagenomics Analysis of Indigenous Fungal Communities in OMW and OMP Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gomez-Munoz, B.; Hatch, D.J.; Bol, R.; Garcia-Ruiz, R. The compost of olive mill pomace: From a waste to a resource—environmental benefits of its application in olive oil groves. In Sustainable Development: Authoritative and Leading Edge Content for Environmental Management; Curkovic, S., Ed.; InTechOpen Ltd.: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Federici, E.; Massaccesi, L.; Pezzolla, D.; Fidati, L.; Montalbani, E.; Proietti, P.; Nasini, L.; Regni, L.; Scargetta, S.; Gigliotti, G. Short-term modifications of soil microbial community structure and soluble organic matter chemical composition following amendment with different solid olive mill waste and their derived composts. Appl. Soil Ecol. 2017, 119, 234–241. [Google Scholar] [CrossRef]
- Piotrowska, A.; Rao, M.A.; Scotti, R.; Gianfreda, L. Changes in soil chemical and biochemical properties following amendment with crude and dephenolized olive mill waste water (OMW). Geoderma 2011, 161, 8–17. [Google Scholar] [CrossRef]
- Tsiamis, G.; Tzagkaraki, G.; Chamalaki, A.; Xypteras, N.; Andersen, G.; Vayenas, D.; Bourtzis, K. Olive-mill wastewater bacterial communities display a cultivar specific profile. Curr. Microbiol. 2012, 64, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Doğan, K.; Sarıoğlu, A.; Coşkan, A. Contribution of green manure, Rhizobium and humic+ fulvic acid on recovering soil biologic activity of olive mill wastewater contaminated soil. Sci. Pap. A. Agron. 2016, 59, 63–68. [Google Scholar]
- Meftah, O.; Guergueb, Z.; Braham, M.; Sayadi, S.; Mekki, A. Long term effects of olive mill wastewaters application on soil properties and phenolic compounds migration under arid climate. Agric. Water Manag. 2019, 212, 119–125. [Google Scholar] [CrossRef]
- El-Bassi, L.; Azzaz, A.A.; Jellali, S.; Akrout, H.; Marks, E.A.N.; Ghimbeu, C.M.; Jeguirim, M. Application of olive mill waste-based biochars in agriculture: Impact on soil properties, enzymatic activities and tomato growth. Sci. Total Environ. 2021, 755, 142531. [Google Scholar] [CrossRef]
- Milanović, V.; Osimani, A.; Cardinali, F.; Taccari, M.; Garofalo, C.; Clementi, F.; Ashoor, S.; Mozzon, M.; Foligni, R.; Canonico, L.; et al. Effect of inoculated Azotobacteria and Phanerochaete Chrysosporium on the composting of olive pomace: Microbial community dynamics and phenols evolution. Sci. Rep. 2019, 9, 16966. [Google Scholar] [CrossRef] [PubMed]
- Ioannou-Ttofa, L.; Michael-Kordatou, I.; Fattas, S.C.; Eusebio, A.; Ribeiro, B.; Rusan, M.; Amer, A.R.B.; Zuraiqi, S.; Waismand, M.; Linder, C.; et al. Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater. Water Res. 2017, 114, 1–13. [Google Scholar] [CrossRef]
- Kontos, S.; Iakovides, I.; Koutsoukos, P.; Paraskeva, C. Isolation of purified high added value products from olive mill wastewater streams through the implementation of membrane technology and cooling crystallization process. Chem. Eng. Trans. 2016, 47, 337–342. [Google Scholar]
- Chiavola, A.; Farabegoli, G.; Antonetti, F. Biological treatment of olive mill wastewater in a sequencing batch reactor. Biochem. Eng. J. 2014, 85, 71–78. [Google Scholar] [CrossRef]
- Annab, H.; Fiol, N.; Villaescusa, I.; Essamri, A. A proposal for the sustainable treatment and valorisation of olive mill wastes. J. Environ. Chem. Eng. 2019, 7, 102803. [Google Scholar] [CrossRef]
- Benamar, A.; Mahjoubi, F.Z.; Barka, N.; Kzaiber, F.; Boutoial, K.; Ali, G.A.M.; Oussama, A. Olive mill wastewater treatment using infiltration percolation in column followed by aerobic biological treatment. SN Appl. Sci. 2020, 2, 655. [Google Scholar] [CrossRef] [Green Version]
- Yay, A.S.E.; Oral, H.V.; Onay, T.T.; Yenigün, O. A study on olive oil mill wastewater management in Turkey: A questionnaire and experimental approach. Resour. Conserv. Recycl. 2012, 60, 64–71. [Google Scholar]
- Poerschmann, J.; Weiner, B.; Baskyr, I. Organic compounds in olive mill wastewater and in solutions resulting from hydrothermal carbonization of the wastewater. Chemosphere 2013, 92, 1472–1482. [Google Scholar] [CrossRef] [PubMed]
- Aharonov-Nadborny, R.; Tsechansky, L.; Raviv, M.; Graber, E.R. Impact of spreading olive mill waste water on agricultural soils for leaching of metal micronutrients and cations. Chemosphere 2017, 179, 213–221. [Google Scholar] [CrossRef]
- Benavente, V.; Fullana, A.; Berge, N.D. Life cycle analysis of hydrothermal carbonization of olive mill waste: Comparison with current management approaches. J. Clean. Prod. 2017, 142, 2637–2648. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.S.; Chin, S.Y.; Lim, J.W.; Witoon, T.; Cheng, C.K. Treatment technologies of palm oil mill effluent (POME) and olive mill wastewater (OMW): A brief review. Environ. Technol. Innov. 2019, 15, 100377. [Google Scholar] [CrossRef]
- Amor, C.; Lucas, M.S.; Garcia, J.; Dominguez, J.R.; De Heredia, J.B.; Peres, J.A. Combined treatment of olive mill wastewater by Fenton’s reagent and anaerobic biological process. J. Environ. Sci. Health A 2015, 50, 161–168. [Google Scholar] [CrossRef]
- Frascari, D.; Bacca, A.E.M.; Zama, F.; Bertin, L.; Fava, F.; Pinelli, D. Olive mill wastewater valorisation through phenolic compounds adsorption in a continuous flow column. Chem. Eng. J. 2016, 283, 293–303. [Google Scholar] [CrossRef]
- Reis, P.M.; Martins, P.J.M.; Martins, R.C.; Gando-Ferreira, L.M.; Quinta-Ferreira, R.M. Integrating Fenton’s process and ion exchange for olive mill wastewater treatment and iron recovery. Environ. Technol. 2018, 39, 308–316. [Google Scholar] [CrossRef]
- Sáez, J.A.; Pérez-Murcia, M.D.; Vico, A.; Martínez-Gallardo, M.R.; Andreu-Rodriguez, F.J.; López, M.J.; Bustamante, M.A.; Sanchez-Hernandez, J.C.; Moreno, J.; Moral, R. Olive mill wastewater-evaporation ponds long term stored: Integrated assessment of in situ bioremediation strategies based on composting and vermicomposting. J. Hazard. Mat. 2021, 402, 123481. [Google Scholar] [CrossRef]
- Cassano, A.; Conidi, C.; Drioli, E. Comparison of the performance of UF membranes in olive mill wastewaters treatment. Water Res. 2011, 45, 3197–3204. [Google Scholar] [CrossRef]
- Michael, I.; Panagi, A.; Ioannou, L.A.; Frontistis, Z.; Fatta-Kassinos, D. Utilizing solar energy for the purification of olive mill wastewater using a pilot-scale photocatalytic reactor after coagulation-flocculation. Water Res. 2014, 60, 28–40. [Google Scholar] [CrossRef]
- Ntougias, S.; Bourtzis, K.; Tsiamis, G. The Microbiology of Olive Mill Wastes. Available online: https://www.hindawi.com/journals/bmri/2013/784591/ (accessed on 29 October 2020).
- Tortosa, G.; Castellano-Hinojosa, A.; Correa-Galeote, D.; Bedmar, E.J. Evolution of bacterial diversity during two-phase olive mill waste (“Alperujo”) composting by 16S-rRNA gene pyrosequencing. Bioresour. Technol. 2017, 224, 101–111. [Google Scholar] [CrossRef]
- Martínez-Gallardo, M.R.; López, M.J.; López-González, J.A.; Jurado, M.M.; Suárez-Estrella, F.; Pérez-Murcia, M.D.; Sáez, J.A.; Moral, R.; Moreno, J. Microbial communities of the olive mill wastewater sludge stored in evaporation ponds: The resource for sustainable bioremediation. J. Environ. Manag. 2021, 279, 111810. [Google Scholar] [CrossRef]
- Mefteh, F.; Chenari Bouket, A.; Daoud, A.; Luptakova, L.; Alenezi, F.; Gharsallah, N.; Lassaad, B. Metagenomic insights and genomic analysis of phosphogypsum and its associated plant endophytic microbiomes reveals valuable actors for waste bioremediation. Microorganisms 2019, 7, 382. [Google Scholar] [CrossRef] [Green Version]
- Daoud, A.; Mefteh, F.; Mnafgui, K.; Turki, M.; Jmal, S.; Amar, R.; Ayadi, F.; ElFeki, A.; Abid, L.; Rateb, M.; et al. Cardiopreventive effect of ethanolic extract of date palm pollen against isoproterenol induced myocardial infarction in rats through the inhibition of the angiotensin-converting enzyme. Exp. Toxicol. Pathol. 2017, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, G.M.; Beiko, R.G.; Langille, M.G.I. Predicting the functional potential of the microbiome from marker genes using PICRUSt. Methods Mol. Biol. 2018, 1849, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Karpouzas, D.G.; Ntougias, S.; Iskidou, E.; Rousidou, C.; Papadopoulou, K.K.; Zervakis, G.I.; Ehaliotis, C. Olive mill wastewater affects the structure of soil bacterial communities. Appl. Soil Ecol. 2010, 45, 101–111. [Google Scholar] [CrossRef]
- Alfano, G.; Lustrato, G.; Lima, G.; Ranalli, G. Present and Future Perspectives of Olive Residues Composting in the Mediterranean Basin (CompMed). Dynamic Soil, Dynamic Plant; Global Science Books: Isleworth, UK, 2009; pp. 39–56. [Google Scholar]
- Tajini, F.; Ouerghi, A.; Hosni, K. Effect of irrigation with olive-mill waste-water on physiological and biochemical parameters as well as heavy-metal accumulation in common bean (Phaseolus vulgaris L.). J. New Sci. 2019, 66, 6. [Google Scholar]
- Martinez-Garcia, G.; Bachmann, R.T.; Williams, C.J.; Burgoyne, A.; Edyvean, R.G. Olive oil waste as a biosorbent for heavy metals. Int. Biodeter. Biodegrad. 2006, 58, 231–238. [Google Scholar] [CrossRef]
- Guo, Q.; Majeed, S.; Xu, R.; Zhang, K.; Kakade, A.; Khan, A.; Hafeez, F.Y.; Mao, C.; Liu, P.; Li, X. Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion: A review. J. Environ. Manag. 2019, 240, 266–272. [Google Scholar] [CrossRef]
- Vuppala, S.; Bavasso, I.; Stoller, M.; Di Palma, L.; Vilardi, G. Olive mill wastewater integrated purification through pre-treatments using coagulants and biological methods: Experimental, modelling and scale-up. J. Clean. Prod. 2019, 236, 117622. [Google Scholar] [CrossRef]
- El Hanandeh, A. Energy recovery alternatives for the sustainable management of olive oil industry waste in Australia: Life cycle assessment. J. Clean. Prod. 2015, 91, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Chanwitheesuk, A.; Teerawutgulrag, A.; Kilburn, J.D.; Rakariyatham, N. Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chem. 2007, 100, 1044–1048. [Google Scholar] [CrossRef]
- Huang, H.-C.; Lee, C.-R.; Weng, Y.-I.; Lee, M.-C.; Lee, Y.-T. Vasodilator effect of Scoparone (6,7-Dimethoxycoumarin) from a Chinese herb. Eur. J. Pharmacol. 1992, 218, 123–128. [Google Scholar] [CrossRef]
- Huei-Chen, H.; Shu-Hsun, C.; Chao, P.-D.L. Vasorelaxants from Chinese herbs, Emodin and Scoparone, possess immunosuppressive properties. Eur. J. Pharmacol. 1991, 198, 211–213. [Google Scholar] [CrossRef]
- Tao, C.; Shkumatov, A.A.; Alexander, S.T.; Ason, B.L.; Zhou, M. Stigmasterol accumulation causes cardiac injury and promotes mortality. Commun. Biol. 2019, 2, 1–10. [Google Scholar] [CrossRef]
- Kalogeraki, V.S.; Zhu, J.; Eberhard, A.; Madsen, E.L.; Winans, S.C. The phenolic vir gene inducer ferulic acid is O-Demethylated by the virH2 protein of an Agrobacterium tumefaciens Ti Plasmid. Mol. Microbiol. 1999, 34, 512–522. [Google Scholar] [CrossRef]
- Lozano-Mena, G.; Sánchez-González, M.; Juan, M.E.; Planas, J.M. Maslinic Acid, a natural phytoalexin-type triterpene from olives—a promising nutraceutical? Molecules 2014, 19, 11538–11559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokhtari, K.; Rufino-Palomares, E.E.; Pérez-Jiménez, A.; Reyes-Zurita, F.J.; Figuera, C.; García-Salguero, L.; Medina, P.P.; Peragón, J.; Lupiáñez, J.A. Maslinic Acid, a triterpene from olive, affects the antioxidant and mitochondrial status of B16F10 melanoma cells grown under stressful conditions. Evid-Based Compl. Alt. Med. 2015, 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodaifa, G.; Ochando-Pulido, J.M.; Rodriguez-Vives, S.; Martinez-Ferez, A. Optimization of continuous reactor at pilot scale for olive-oil mill wastewater treatment by fenton-like process. Chem. Eng. J. 2013, 220, 117–124. [Google Scholar] [CrossRef]
- Hultman, J.; Kurola, J.; Rainisalo, A.; Kontro, M.; Romantschuk, M. Utility of molecular tools in monitoring large scale composting. In Microbes at Work: From Wastes to Resources; Insam, H., Franke-Whittle, I., Goberna, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 135–151. [Google Scholar]
- Storey, S.; Chualain, D.N.; Doyle, O.; Clipson, N.; Doyle, E. Comparison of bacterial succession in green waste composts amended with inorganic fertilizer and wastewater treatment plant sludge. Bioresour. Technol. 2015, 179, 71–77. [Google Scholar] [CrossRef]
- Morillo, J.A.; Aguilera, M.; Antízar-Ladislao, B.; Fuentes, S.; Ramos-Cormenzana, A.; Russell, N.J.; Monteoliva-Sánchez, M. Molecular microbial and chemical investigation of the bioremediation of two-phase olive mill waste using laboratory-scale bioreactors. Appl. Microbiol. Biotechnol. 2008, 79, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Neher, D.A.; Weicht, T.R.; Bates, S.T.; Leff, J.W.; Fierer, N. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times. PLoS ONE 2013, 8, e79512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavroulakis, N.; Ntougias, S. Bacterial and β-proteobacterial diversity in Olea europaea var. mastoidis and O. europaea var. koroneiki generated olive mill wastewaters: Influence of cultivation and harvesting practice on bacterial community structure. World J. Microbiol. Biotechnol. 2011, 27, 57–66. [Google Scholar] [CrossRef]
- Gupta, R.; Garg, V.K. 5—Vermitechnology for organic waste recycling. In Current Developments in Biotechnology and Bioengineering; Wong, J.W.-C., Tyagi, R.D., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 83–112. [Google Scholar]
- Jung, J.-H.; Sim, Y.-B.; Baik, J.-H.; Park, J.-H.; Kim, S.-H. High-rate mesophilic hydrogen production from food waste using hybrid immobilized microbiome. Bioresour. Technol. 2021, 320, 124279. [Google Scholar] [CrossRef] [PubMed]
- Federici, E.; Pepi, M.; Esposito, A.; Scargetta, S.; Fidati, L.; Gasperini, S.; Cenci, G.; Altieri, R. Two-phase olive mill waste composting: Community dynamics and functional role of the resident microbiota. Bioresour. Technol. 2011, 102, 10965–10972. [Google Scholar] [CrossRef]
- Chowdhury, A.K.M.M.B.; Akratos, C.S.; Vayenas, D.V.; Pavlou, S. Olive mill waste composting: A review. Int. Biodeterior. Biodegrad. 2013, 85, 108–119. [Google Scholar] [CrossRef]
- Agnolucci, M.; Cristani, C.; Battini, F.; Palla, M.; Cardelli, R.; Saviozzi, A.; Nuti, M. Microbially-enhanced composting of olive mill solid waste (wet husk): Bacterial and fungal community dynamics at industrial pilot and farm level. Bioresour. Technol. 2013, 134, 10–16. [Google Scholar] [CrossRef]
- Slama, H.; Cherif-Silini, H.; Chenari Bouket, A.; Qader, M.; Silini, A.; Yahiaoui, B.; Alenezi, F.; Luptakova, L.; Triki, M.; Vallat, A.; et al. Screening for Fusarium antagonistic bacteria from contrasting niches designated the endophyte Bacillus halotolerans as plant warden against Fusarium. Front. Microbiol. 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doula, M.K.; Moreno-Ortego, J.L.; Tinivella, F.; Inglezakis, V.J.; Sarris, A.; Komnitsas, K. Olive mill waste: Recent advances for the sustainable development of olive oil industry. In Olive Mill Waste: Recent Advances for Sustainable Management; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 29–56. [Google Scholar]
- Sassi, A.B.; Ouazzani, N.; Walker, G.M.; Ibnsouda, S.; El Mzibri, M.; Boussaid, A. Detoxification of olive mill wastewaters by Moroccan yeast isolates. Biodegradation 2008, 19, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Sinigaglia, M.; Di Benedetto, N.; Bevilacqua, A.; Corbo, M.R.; Capece, A.; Romano, P. Yeasts isolated from olive mill wastewaters from Southern Italy: Technological characterization and potential use for phenol removal. Appl. Microbiol. Biotechnol. 2010, 87, 2345–2354. [Google Scholar] [CrossRef] [PubMed]
- Ciafardini, G.; Zullo, B.A. Use of selected yeast starter cultures in industrial-scale processing of brined taggiasca black table olives. Food Microbiol. 2019, 84, 103250. [Google Scholar] [CrossRef]
- Bleve, G.; Lezzi, C.; Chiriatti, M.A.; D’Ostuni, I.; Tristezza, M.; Di Venere, D.; Sergio, L.; Mita, G.; Grieco, F. Selection of non-conventional yeasts and their use in immobilized form for the bioremediation of olive oil mill wastewaters. Bioresour. Technol. 2011, 102, 982–989. [Google Scholar] [CrossRef]
- Jarboui, R.; Baati, H.; Fetoui, F.; Gargouri, A.; Gharsallah, N.; Ammar, E. Yeast performance in wastewater treatment: Case study of Rhodotorula mucilaginosa. Environ. Technol. 2012, 33, 951–960. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Cibelli, F.; Raimondo, M.L.; Carlucci, A.; Lops, F.; Sinigaglia, M.; Corbo, M.R. Fungal bioremediation of olive mill wastewater: Using a multi-step approach to model inhibition or stimulation. J. Sci. Food Agric. 2017, 97, 461–468. [Google Scholar] [CrossRef]
Samples Codes | Description | Metagenomique |
---|---|---|
A1 | Sample collected from contaminated area around OMW evaporation pond in Agareb | - |
A2 | Sample collected from the vicinity of evaporation pond of Agareb with lower level of contamination | - |
A3 | Sample collected outside of the evaporation pond of Agareb with no sign of contamination (control) | - |
A4 | Sample collected from the center of dried evaporation pond of Agareb | - |
A5 | OMW sample collected from the center of dried evaporation pond of Agareb but not fully dried still wet | - |
MA | Sample collected from soil with dried OMW and deposited in huge piles in Agareb | + |
C1 | Sample collected from contaminated area around OMW evaporation pond in Cherarda | - |
C2 | Sample collected from the vicinity of evaporation pond of Cherarda with lower level of contamination | - |
C3 | Sample collected outside of the evaporation pond of Cherarda with no sign of contamination (control) | - |
C4 | Sample collected from the center of a completely dried out evaporation pond of Cherarda | - |
C5 | Sample collected from the center of a completely dried out evaporation pond of Cherarda after removal of the dried out residue | - |
C6 | Sample collected from the center of a completely dried out evaporation pond of Cherarda after digging 20 cm deep | - |
C7 | Sample collected from the center of a completely dried out evaporation pond of Cherarda after digging 50 cm deep | - |
OMP | Olive Mill Pomace sample collected from an olive oil industry | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slama, H.B.; Chenari Bouket, A.; Alenezi, F.N.; Khardani, A.; Luptakova, L.; Vallat, A.; Oszako, T.; Rateb, M.E.; Belbahri, L. Olive Mill and Olive Pomace Evaporation Pond’s By-Products: Toxic Level Determination and Role of Indigenous Microbiota in Toxicity Alleviation. Appl. Sci. 2021, 11, 5131. https://doi.org/10.3390/app11115131
Slama HB, Chenari Bouket A, Alenezi FN, Khardani A, Luptakova L, Vallat A, Oszako T, Rateb ME, Belbahri L. Olive Mill and Olive Pomace Evaporation Pond’s By-Products: Toxic Level Determination and Role of Indigenous Microbiota in Toxicity Alleviation. Applied Sciences. 2021; 11(11):5131. https://doi.org/10.3390/app11115131
Chicago/Turabian StyleSlama, Houda Ben, Ali Chenari Bouket, Faizah N. Alenezi, Ameur Khardani, Lenka Luptakova, Armelle Vallat, Tomasz Oszako, Mostafa E. Rateb, and Lassaad Belbahri. 2021. "Olive Mill and Olive Pomace Evaporation Pond’s By-Products: Toxic Level Determination and Role of Indigenous Microbiota in Toxicity Alleviation" Applied Sciences 11, no. 11: 5131. https://doi.org/10.3390/app11115131
APA StyleSlama, H. B., Chenari Bouket, A., Alenezi, F. N., Khardani, A., Luptakova, L., Vallat, A., Oszako, T., Rateb, M. E., & Belbahri, L. (2021). Olive Mill and Olive Pomace Evaporation Pond’s By-Products: Toxic Level Determination and Role of Indigenous Microbiota in Toxicity Alleviation. Applied Sciences, 11(11), 5131. https://doi.org/10.3390/app11115131