Environmentally Stable Chiral-Nematic Liquid-Crystal Elastomers with Mechano-Optical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of N* LC (x) Elastomers
2.3. Characterization of N* LC (x) Elastomers
3. Results and Discussion
3.1. Phase Transition Behavior
3.2. Thermal Stability of Optical Properties
3.3. Mechano-Optical Response Behavior and Stability of N* LC (x) Elastomers
3.4. Optical Stability in Solvents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, M.; Wang, L.; Dou, S.; Zhao, J.; Xu, H.; Wang, B.; Zhang, L.; Li, X.; Pan, L.; Li, Y. Recent advances in colloidal photonic crystal-based anti-counterfeiting materials. Crystals 2019, 9, 417. [Google Scholar] [CrossRef] [Green Version]
- Akamatsu, N.; Hisano, K.; Tatsumi, R.; Aizawa, M.; Barrett, C.J.; Shishido, A. Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals. Soft Matter 2017, 13, 7486–7491. [Google Scholar] [CrossRef] [PubMed]
- Manouras, T.; Vamvakaki, M. Field responsive materials: Photo-, electro-, magnetic- and ultrasound-sensitive polymers. Polym. Chem. 2017, 8, 74–96. [Google Scholar] [CrossRef]
- Ishizuki, K.; Aoki, D.; Goseki, R.; Otsuka, H. Multicolor mechanochromic polymer blends that can discriminate between stretching and grinding. ACS Macro Lett. 2018, 7, 556–560. [Google Scholar] [CrossRef]
- Wu, P.; Shen, X.; Schäfer, C.G.; Pan, J.; Guo, J.; Wang, C. Mechanochromic and thermochromic shape memory photonic crystal films based on core/shell nanoparticles for smart monitoring. Nanoscale 2019, 11, 20015–20023. [Google Scholar] [CrossRef]
- Chao, D.; Yang, Y.; Jia, X.; Berda, E.B. Rationally-designed multi responsive fluorescent switching polymer films. Dyes Pigm. 2019, 167, 77–82. [Google Scholar] [CrossRef]
- Liu, H.; Gu, Y.; Dai, Y.; Wang, K.; Zhang, S.; Chen, G.; Zou, B.; Yang, B. Pressure-induced blue-shifted and enhanced emission: A cooperative effect between aggregation-induced emission and energy-transfer suppression. J. Am. Chem. Soc. 2020, 142, 1153–1158. [Google Scholar] [CrossRef]
- Stumpel, J.E.; Broer, D.J.; Schenning, A.P.H.J. Stimuli-responsive photonic polymer coatings. Chem. Commun. 2014, 50, 15839–15848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wintzheimer, S.; Reichstein, J.; Wenderoth, S.; Hasselmann, S.; Oppmann, M.; Seuffert, M.T.; Müller-Buschbaum, K.; Mandel, K. Expanding the horizon of mechanochromic detection by luminescent shear stress sensor supraparticles. Adv. Funct. Mater. 2019, 29, 1901193. [Google Scholar] [CrossRef]
- Meng, F.; Du, C.; Zhou, N.; He, X.-Z.; Chen, H. Synthesis and characterization of fluorinated liquid-crystalline elastomers containing chiral liquid-crystalline crosslinking units. Eur. Polym. J. 2013, 49, 3392–3401. [Google Scholar] [CrossRef]
- Hu, J.-S.; Liu, X.-F.; Meng, Q.-B.; Zhang, Y. New chiral liquid crystalline monomers, polymers, and elastomers derived from menthol derivatives: Synthesis and mesomorphism. J. Mater. Sci. 2014, 49, 1229–1239. [Google Scholar] [CrossRef]
- Bubnov, A.; Domenici, V.; Hamplová, V.; Kašpar, M.; Zalar, B. First liquid single crystal elastomer containing lactic acid derivative as chiral co-monomer: Synthesis and properties. Polymer 2011, 52, 4490–4497. [Google Scholar] [CrossRef]
- Varanytsia, A.; Nagai, H.; Urayama, K.; Palffy-Muhoray, P. Accurate control of laser emission from cholesteric liquid crystal elastomers. Mol. Cryst. Liq. Cryst. 2017, 647, 216–222. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, J.; Ikeda, T.; Jiang, L. Bio-inspired liquid crystal actuator materials. J. Mater. Chem. C 2019, 7, 3413–3428. [Google Scholar] [CrossRef]
- Kragt, A.J.J.; Zuurbier, N.C.M.; Broer, D.J.; Schenning, A.P.H.J. Temperature-responsive, multicolor-changing photonic polymers. ACS Appl. Mater. Interfaces 2019, 11, 28172–28179. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, B.; Zhou, L.; Wang, W.; Hu, W.; Shen, D. Wide tunable lasing in photoresponsive chiral liquid crystal emulsion. J. Mater. Chem. C 2015, 3, 2462–2470. [Google Scholar] [CrossRef]
- Mulder, D.J.; Schenning, A.P.H.J.; Bastiaansen, C.W.M. Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors. J. Mater. Chem. C 2014, 2, 6695–6705. [Google Scholar] [CrossRef] [Green Version]
- Zhai, F.; Feng, Y.; Zhou, K.; Wang, L.; Zheng, Z.; Feng, W. Graphene-based chiral liquid crystal materials for optical applications. J. Mater. Chem. C 2019, 7, 2146–2171. [Google Scholar] [CrossRef]
- Jiang, Y.; Cong, Y.; Zhang, B. Novel cholesteric liquid crystalline elastomers containing dimer type nematic and chiral liquid crystalline side-chains. RSC Adv. 2016, 6, 81902–81912. [Google Scholar] [CrossRef]
- Jiang, Y.; Cong, Y.; Zhang, B. Synthesis and characterization of chiral smectic side-chain liquid crystalline elastomers containing nematic and chiral mesogens. New J. Chem. 2016, 40, 9352–9360. [Google Scholar] [CrossRef]
- Meng, F.; Bai, L.; Ma, S.; Lan, X.; Li, X.; Wang, Z. Cyclosiloxane-based liquid-crystalline elastomers containing fluorinated mesogens and chiral crosslinking groups. Colloid Polym. Sci. 2014, 292, 1511–1519. [Google Scholar] [CrossRef]
- Varanytsia, A.; Nagai, H.; Urayama, K.; Palffy-Muhoray, P. Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain. Sci. Rep. 2015, 5, 17739. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Hamad, W.Y.; MacLachlan, M.J. Broadband circular polarizing film based on chiral nematic liquid crystals. Adv. Opt. Mater. 2018, 6, 1800412. [Google Scholar] [CrossRef]
- Chen, R.; Lee, Y.-H.; Zhan, T.; Yin, K.; An, Z.; Wu, S.-T. Multistimuli-responsive self-organized liquid crystal Bragg gratings. Adv. Opt. Mater. 2019, 7, 1900101. [Google Scholar] [CrossRef]
- Lee, K.M.; Rumi, M.; Mills, M.S.; Reshetnyak, V.; Evans, D.R.; Bunning, T.J.; McConney, M.E. A different perspective on cholesteric liquid crystals reveals unique color and polarization changes. ACS Appl. Mater. Interfaces 2020, 12, 37400–37408. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.-L.; Hu, W.; Zheng, Z.-G.; Wu, S.-B.; Chen, P.; Li, Q.; Lu, Y.-Q. Light-activated liquid crystalline hierarchical architecture toward photonics. Adv. Opt. Mater. 2019, 7, 1900393. [Google Scholar] [CrossRef]
- Guo, J.; Wu, H.; Chen, F.; Zhang, L.; He, W.; Yang, H.; Wei, J. Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure. J. Mater. Chem. 2010, 20, 4094–4102. [Google Scholar] [CrossRef]
- Wu, X.; Yu, L.; Cao, H.; Guo, R.; Li, K.; Cheng, Z.; Wang, F.; Yang, Z.; Yang, H. Wide-band reflective films produced by side-chain cholesteric liquid-crystalline elastomers derived from a binaphthalene crosslinking agent. Polymer 2011, 52, 5836–5845. [Google Scholar] [CrossRef]
- Finkelmann, H.; Kim, S.T.; Muñoz, A.; Palffy-Muhoray, P.; Taheri, B. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv. Mater. 2001, 13, 1069–1072. [Google Scholar] [CrossRef]
- Lagerwall, J.P.F.; Schütz, C.; Salajkova, M.; Noh, J.H.; Park, J.H.; Scalia, G.; Bergström, L. Cellulose nanocrystal-based materials: From liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater. 2014, 6, e80. [Google Scholar] [CrossRef] [Green Version]
- Nagai, H.; Urayama, K. Thermal response of cholesteric liquid crystal elastomers. Phys. Rev. E 2015, 92, 022501. [Google Scholar] [CrossRef]
- Ranjkesh, A.; Yoon, T.-H. Thermal and electrical wavelength tuning of Bragg reflection with ultraviolet light absorbers in polymer-stabilized cholesteric liquid crystals. J. Mater. Chem. C 2018, 6, 12377–12385. [Google Scholar] [CrossRef]
- Fuchigami, Y.; Takigawa, T.; Urayama, K. Electrical actuation of cholesteric liquid crystal gels. ACS Macro Lett. 2014, 3, 813–818. [Google Scholar] [CrossRef]
- Saha, A.; Tanaka, Y.; Han, Y.; Bastiaansen, C.M.W.; Broer, D.J.; Sijbesma, R.P. Irreversible visual sensing of humidity using a cholesteric liquid crystal. Chem. Commun. 2012, 48, 4579–4581. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.-S.; Zhang, B.-Y.; Jia, Y.-G.; Chen, S. Side-chain cholesteric liquid crystalline elastomers derived from a mesogenic cross-linking agent. Macromolecules 2003, 36, 9060–9066. [Google Scholar] [CrossRef]
- Carfagna, C.; Amendola, E.; Giamberini, M. Liquid crystalline epoxy based thermosetting polymers. Prog. Polym. Sci. 1997, 22, 1607–1647. [Google Scholar] [CrossRef]
- Han, M.; Guo, K.; Wang, F.; Zhu, Y.; Qi, H. Synthesis, characterization, and properties of thermosets based on the cocuring of an acetylene-terminated liquid-crystal and silicon-containing arylacetylene oligomer. J. Appl. Polym. Sci. 2017, 134, 45141. [Google Scholar] [CrossRef]
- Dingemans, T.J.; Iqbal, M. Liquid crystal thermoset resins for high temperature composites and adhesives. Plast. Rubber Compos. 2010, 39, 189–194. [Google Scholar] [CrossRef]
- Brömmel, F.; Kramer, D.; Finkelmann, H. Preparation of liquid crystalline elastomers. In Liquid Crystal Elastomers: Materials and Applications, 1st ed.; de Jeu, W.H., Ed.; Springer: Berlin, Germany, 2012; Volume 250, pp. 1–48. [Google Scholar] [CrossRef]
- Sánchez-Ferrer, A.; Torras, N.; Esteve, J. Integration of liquid-crystalline elastomers in MEMS/MOEMS. In Liquid Crystalline Polymers, 1st ed.; Thakur, V.K., Kessler, M.R., Eds.; Springer: Cham, Switzerland, 2016; Volume 1, pp. 553–582. [Google Scholar] [CrossRef]
- Kato, T.; Uchida, J.; Ichikawa, T.; Soberats, B. Functional liquid-crystalline polymers and supramolecular liquid crystals. Polym. J. 2018, 50, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Yoshizawa, A. Liquid crystal supermolecules stabilizing an optically isotropic phase with frustrated molecular organization. Polym. J. 2012, 44, 490–502. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Wang, L.; Li, J.; Liu, X.; Jiang, S. Cyanobiphenyl-mesogened liquid crystalline polymer bonded on silica as the stationary phase with shape and polarity recognition for LC. Chromatographia 2011, 73, 5–16. [Google Scholar] [CrossRef]
- Dwivedi, K.K.; Dwivedi, M.K.; Tiwari, S.N. Study of intermolecular interactions in liquid crystals: para-Butyl-p’-cyano-biphenyl. J. Cryst. Process Technol. 2014, 4, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Yuan, Y.; Chen, L.; Li, Y.; Zhang, H. High performance liquid crystalline physical gels prepared by side chain liquid crystalline polymers. Polymer 2018, 151, 75–83. [Google Scholar] [CrossRef]
- Shin, S.; Park, M.; Cho, J.K.; Char, J.; Gong, M.; Jeong, K.-U. Tuning helical twisting power of isosorbide-based chiral dopants by chemical modifications. Mol. Cryst. Liq. Cryst. 2011, 534, 19–31. [Google Scholar] [CrossRef]
- Ku, K.; Kimura, S.; Yuasa, K.; Hisano, K.; Tsutsumi, O. Control of molecular-level mechano-optical response of chiral liquid-crystalline elastomers. In Proceedings of the SPIE 11477, Molecular and Nano Machines III, San Diego, CA, USA, 25 August 2020; p. 1147703. [Google Scholar] [CrossRef]
- Kelly, S.M. Anisotropic networks, elastomers and gels. Liq. Cryst. Today 1996, 6, 1–6. [Google Scholar] [CrossRef]
- Hu, J.-S.; Zhang, B.-Y.; Zheng, Y.-Y.; Li, Q.-Y. Synthesis and phase behavior of side-chain cholesteric liquid-crystalline elastomers derived from a chiral crosslinking agent. React. Funct. Polym. 2005, 64, 1–11. [Google Scholar] [CrossRef]
- Belmonte, A.; Ussembayev, Y.Y.; Bus, T.; Nys, I.; Neyts, K.; Schenning, A.P.H.J. Dual light and temperature responsive micrometer-sized structural color actuators. Small 2020, 16, 1905219. [Google Scholar] [CrossRef] [Green Version]
- Ogiwara, A.; Kakiuchida, H. Thermally tunable light filter composed of cholesteric liquid crystals with different temperature dependence. Sol. Energy Mater. Sol. Cells 2016, 157, 250–258. [Google Scholar] [CrossRef]
- Xie, P.; Zhang, R. Liquid crystal elastomers, networks and gels: Advanced smart materials. J. Mater. Chem. 2005, 15, 2529–2550. [Google Scholar] [CrossRef]
- Dai, M.; Picot, O.T.; Verjans, J.M.N.; de Haan, L.T.; Schenning, A.P.H.J.; Peijs, T.; Bastiaansen, C.W.M. Humidity-responsive bilayer actuators based on a liquid-crystalline polymer network. ACS Appl. Mater. Interfaces 2013, 5, 4945–4950. [Google Scholar] [CrossRef] [Green Version]
- Haan, L.T.d.; Verjans, J.M.N.; Broer, D.J.; Bastiaansen, C.W.M.; Schenning, A.P.H.J. Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl. J. Am. Chem. Soc. 2014, 136, 10585–10588. [Google Scholar] [CrossRef]
x | HAB (mol%) | CN (mol%) | 5CB (mol%) | Irgacure 651 (mol%) | HDDA (mol%) | ISBCD (mol%) |
---|---|---|---|---|---|---|
2.0 | 40 | 40 | 20 | 1 | 7 | 2.0 |
2.2 | 2.2 | |||||
2.4 | 2.4 | |||||
2.6 | 2.6 | |||||
2.8 | 2.8 | |||||
3.0 | 3.0 |
x | Phase Transition Temperature (°C) | |
---|---|---|
Monomer Mixture 1 | Elastomer 1 | |
2.0 | N* 28 I | G 9 N* 93 I |
2.2 | N* 28 I | G 12 N* 90 I |
2.4 | N* 27 I | G 11 N* 90 I |
2.6 | N* 27 I | G 8 N* 91 I |
2.8 | N* 27 I | G 12 N* 95 I |
3.0 | N* 26 I | G 10 N* 92 I |
Molar Ratio of HAB/CN 1 | Phase Transition Temperature 2 (°C) |
---|---|
70/10 | G 10 N* 80 I |
60/20 | G 10 N* 83 I |
50/30 | G 10 N* 86 I |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ku, K.; Hisano, K.; Kimura, S.; Shigeyama, T.; Akamatsu, N.; Shishido, A.; Tsutsumi, O. Environmentally Stable Chiral-Nematic Liquid-Crystal Elastomers with Mechano-Optical Properties. Appl. Sci. 2021, 11, 5037. https://doi.org/10.3390/app11115037
Ku K, Hisano K, Kimura S, Shigeyama T, Akamatsu N, Shishido A, Tsutsumi O. Environmentally Stable Chiral-Nematic Liquid-Crystal Elastomers with Mechano-Optical Properties. Applied Sciences. 2021; 11(11):5037. https://doi.org/10.3390/app11115037
Chicago/Turabian StyleKu, Kyosun, Kyohei Hisano, Seiya Kimura, Tomoki Shigeyama, Norihisa Akamatsu, Atsushi Shishido, and Osamu Tsutsumi. 2021. "Environmentally Stable Chiral-Nematic Liquid-Crystal Elastomers with Mechano-Optical Properties" Applied Sciences 11, no. 11: 5037. https://doi.org/10.3390/app11115037
APA StyleKu, K., Hisano, K., Kimura, S., Shigeyama, T., Akamatsu, N., Shishido, A., & Tsutsumi, O. (2021). Environmentally Stable Chiral-Nematic Liquid-Crystal Elastomers with Mechano-Optical Properties. Applied Sciences, 11(11), 5037. https://doi.org/10.3390/app11115037