Mechanical Properties and Thermal Conductivity of Fly Ash-Based Geopolymer Foams with Polypropylene Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Geopolymer
2.3. Test Apparatus and Procedure
3. Results and Discussion
3.1. Foam Effect on Compressive Strength of Geopolymer
3.2. Fiber Effect on the Compressive Strength and Density of Geopolymer
3.3. PP Fibers Effect on Tensile Strength of Foamed Geopolymers
3.4. PP Fiber Effect on Thermal Conductivity of Foamed Geopolymer
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Provis, J.L.; van Deventer, J.S.J. Geopolymers: Structure, Processing, Properties and Industrial Applications; CRC Press: Boca Raton, FL, USA, 2009; ISBN 9781845692636. [Google Scholar]
- Davidovits, J. Properties of Geopolymer Cements. In Proceedings of the First International Conference on Alkaline Cements and Concretes, Scientific Research Institute on Binders and Materials, Kiev, Ukraine, 11–14 October 1994; Volume 1, pp. 131–149. [Google Scholar]
- Davidovits, J. Geopolymers: Inorganic Polymeric New Material. J. Therm. Anal. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Yan, H.; Kodur, V.; Wu, B.; Cao, L.; Wang, F. Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures. Constr. Build. Mater. 2016, 109, 17–24. [Google Scholar] [CrossRef]
- Walbrück, K.; Maeting, F.; Witzleben, S.; Stephan, D. Natural fiber-stabilized geopolymer foams-A review. Materials 2020, 13, 3198. [Google Scholar] [CrossRef]
- Subaer Influence of Aggregate on the Microstructure of Geopolymer; Curtin University of Technology: Bentley, Australia, 2004.
- Subaer; Van Riessen, A. Thermo-mechanical and microstructural characterisation of sodium-poly(sialate-siloxo) (Na-PSS) geopolymers. J. Mater. Sci. 2007, 42, 3117–3123. [Google Scholar] [CrossRef]
- Łach, M.; Korniejenko, K.; Mikuła, J. Thermal Insulation and Thermally Resistant Materials Made of Geopolymer Foams. Procedia Eng. 2016, 151, 410–416. [Google Scholar] [CrossRef][Green Version]
- Huang, Y.; Gong, L.; Shi, L.; Cao, W.; Pan, Y.; Cheng, X. Experimental investigation on the influencing factors of preparing porous fly ash-based geopolymer for insulation material. Energy Build. 2018, 168, 9–18. [Google Scholar] [CrossRef]
- Carabba, L.; Moricone, R.; Scarponi, G.E.; Tugnoli, A.; Bignozzi, M.C. Alkali activated lightweight mortars for passive fire protection: A preliminary study. Constr. Build. Mater. 2019, 195, 75–84. [Google Scholar] [CrossRef]
- Jaya, N.A.; Yun-Ming, L.; Cheng-Yong, H.; Abdullah, M.M.A.B.; Hussin, K. Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer. Constr. Build. Mater. 2020, 247. [Google Scholar] [CrossRef]
- Maras, M.M.; Kose, M.M. Mechanical and Microstructural Properties of Polypropylene Fiber-Reinforced Geopolymer Composites. J. Fiber Sci. Technol. 2019, 75, 35–46. [Google Scholar] [CrossRef][Green Version]
- Irshidat, M.R.; Al-Nuaimi, N.; Rabie, M. The role of polypropylene microfibers in thermal properties and post-heating behavior of cementitious composites. Materials 2020, 13, 2676. [Google Scholar] [CrossRef] [PubMed]
- Jhatial, A.A.; Goh, W.I.; Mohamad, N.; Alengaram, U.J.; Mo, K.H. Effect of Polypropylene Fibres on the Thermal Conductivity of Lightweight Foamed Concrete. In Proceedings of the MATEC Web of Conferences, Pulau Pinang, Malaysia, 6–7 December 2018; Volume 150, pp. 1–7. [Google Scholar]
- Won, J.P.; Choi, S.W.; Lee, S.W.; Jang, C.I.I.; Lee, S.J. Mix proportion and properties of fire-resistant wet-mixed high-strength polypropylene fiber-reinforced sprayed polymer cement composites. Compos. Struct. 2010, 92, 2166–2172. [Google Scholar] [CrossRef]
- Pham, K.V.A.; Nguyen, T.K.; Le, T.A.; Han, S.W.; Lee, G.; Lee, K. Assessment of performance of fiber reinforced geopolymer composites by experiment and simulation analysis. Appl. Sci. 2019, 9, 3424. [Google Scholar] [CrossRef][Green Version]
- Choi, S.J.; Kim, S.H.; Lee, S.J.; Won, R.; Won, J.P. Mix proportion of eco-friendly fireproof high-strength concrete. Constr. Build. Mater. 2013, 38, 181–187. [Google Scholar] [CrossRef]
- Society of Fire Protection Association. SFPE Handbook of Fire Protection Engineering, 3rd ed.; National Fire Protection Association: Quincy, MA, USA, 2002; ISBN 0877654514. [Google Scholar]
- Agustini, N.K.A.; Triwiyono, A.; Sulistyo, D. Suyitno Effects of water to solid ratio on thermal conductivity of fly ash-based geopolymer paste. IOP Conf. Ser. Earth Environ. Sci. 2020, 426, 012010. [Google Scholar] [CrossRef]
- ASTM. ASTM C109/C109M for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or 50 mm Cube Specimens); ASTM International: West Conshohocken, PA, USA, 2002. [Google Scholar]
- ASTM. ASTM C307-03 Standard Test Method for Tensile Strength of Chemical-Resistant Mortar, Grouts, and Monolithic Surfacings; ASTM: West Conshohocken, PA, USA, 2003. [Google Scholar]
- ASTM. ASTM C177 for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate; ASTM: West Conshohocken, PA, USA, 1997. [Google Scholar]
- Masi, G.; Rickard, W.D.A.; Vickers, L.; Bignozzi, M.C.; Van Riessen, A. A comparison between different foaming methods for the synthesis of light weight geopolymers. Ceram. Int. 2014, 40, 13891–13902. [Google Scholar] [CrossRef][Green Version]
- Feng, J.; Zhang, R.; Gong, L.; Li, Y.; Cao, W.; Cheng, X. Development of porous fly ash-based geopolymer with low thermal conductivity. Mater. Des. 2015, 65, 529–533. [Google Scholar] [CrossRef]
- Ranjbar, N.; Mehrali, M.; Behnia, A.; Javadi Pordsari, A.; Mehrali, M.; Alengaram, U.J.; Jumaat, M.Z. A Comprehensive Study of the Polypropylene Fiber Reinforced Fly Ash Based Geopolymer. PLoS ONE 2016. [Google Scholar] [CrossRef][Green Version]
- Rastri Utami, F.A.; Triwiyono, A.; Agustini, N.K.A.; Perdana, I. Thermal Conductivity of Geopolymer with Polypropylene Fiber. IOP Conf. Ser. Mater. Sci. Eng. 2020, 742, 012031. [Google Scholar] [CrossRef]
- Zabihi, S.M.; Tavakoli, H.; Mohseni, E. Engineering and microstructural properties of fiber-reinforced rice husk-ash based geopolymer concrete. J. Mater. Civ. Eng. 2018, 30, 1–10. [Google Scholar] [CrossRef]
- Taye, E.A.; Roether, J.A.; Schubert, D.W.; Redda, D.T.; Boccaccini, A.R. Article hemp fiber reinforced red mud/fly ash geopolymer composite materials: Effect of fiber content on mechanical strength. Materials 2021, 14, 511. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, D.; Zhao, J.; Li, D.; Ng, S.; Rui, Y. Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material. J. Build. Eng. 2018, 20, 21–29. [Google Scholar] [CrossRef]
- Peng, X.; Shuai, Q.; Li, H.; Ding, Q.; Gu, Y.; Cheng, C.; Xu, Z. Fabrication and fireproofing performance of the coal fly ash-metakaolin-based geopolymer foams. Materials 2020, 13, 1750. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hassan, H.S.; Abdel-Gawwad, H.A.; García, S.R.V.; Israde-Alcántara, I. Fabrication and characterization of thermally-insulating coconut ash-based geopolymer foam. Waste Manag. 2018, 80, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, Z.; Zhang, Y.; Li, D. Preparation and characterization of ultra-lightweight foamed geopolymer (UFG) based on fly ash-metakaolin blends. Constr. Build. Mater. 2018, 168, 771–779. [Google Scholar] [CrossRef]
- Lawson, R.; Newman, G. Fire Resistant Design of Steel Structures—A Handbook to BS 5950: Part 8; The Steel Construction Institute: Berkshire, UK, 1990. [Google Scholar]
Main Components | Proportions (%) |
---|---|
SiO2 | 38.90 |
Al2O3 | 18.21 |
Fe2O3 | 18.21 |
CaO | 14.61 |
MgO | 7.18 |
Na2O | 1.76 |
K2O | 1.23 |
TiO | 0.95 |
MnO | 0.22 |
Cr2O3 | 0.01 |
SO3 | 0.59 |
LOI * | 0.69 |
Code | FA | SS | SH | Foam (lt) | PP |
---|---|---|---|---|---|
Geo. paste control | 1587.28 | 370.37 | 185.18 | 0.00 | 0.00 |
Geo.Foam40%.PP 0% | 952.37 | 222.22 | 111.11 | 400.00 | 0.00 |
Geo.Foam60%.PP 0% | 634.91 | 148.15 | 74.07 | 600.00 | 0.00 |
Geo.Foam40%.PP 0.25% | 952.37 | 222.22 | 111.11 | 400.00 | 2.38 |
Geo.Foam60%.PP 0.25% | 634.91 | 148.15 | 74.07 | 600.00 | 1.59 |
Geo.Foam40%.PP 0.5% | 952.37 | 222.22 | 111.11 | 400.00 | 4.76 |
Geo.Foam60%.PP 0.5% | 634.91 | 148.15 | 74.07 | 600.00 | 3.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agustini, N.K.A.; Triwiyono, A.; Sulistyo, D.; Suyitno, S. Mechanical Properties and Thermal Conductivity of Fly Ash-Based Geopolymer Foams with Polypropylene Fibers. Appl. Sci. 2021, 11, 4886. https://doi.org/10.3390/app11114886
Agustini NKA, Triwiyono A, Sulistyo D, Suyitno S. Mechanical Properties and Thermal Conductivity of Fly Ash-Based Geopolymer Foams with Polypropylene Fibers. Applied Sciences. 2021; 11(11):4886. https://doi.org/10.3390/app11114886
Chicago/Turabian StyleAgustini, Ni Komang Ayu, Andreas Triwiyono, Djoko Sulistyo, and S Suyitno. 2021. "Mechanical Properties and Thermal Conductivity of Fly Ash-Based Geopolymer Foams with Polypropylene Fibers" Applied Sciences 11, no. 11: 4886. https://doi.org/10.3390/app11114886