The Effect of Dust Transport on the Concentration of Chlorophyll-A in the Surface Layer of the Black Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Analytical Methods
2.3. Air Masses Trajectories Analyses
2.4. The Distribution of Chlorophyll-A Concentration and Sea Surface Temperature in the Black Sea
2.5. Redfield Ratio
3. Results
4. Discussion
5. Conclusions
- Dust transport can be one of the important sources of nutrients (inorganic nitrogen, phosphorus, and silicon) for the surface layer of the Black Sea. After atmospheric depositions concentration of phosphates in the surface layer of the Sevastopol Bay can increase more than five times compared with background concentration. Increase of silicon concentration can reach 30%.
- The influx of nutrients with the atmospheric depositions can result in an increase of chlorophyll-A concentration by 11–36%.
- The influx of atmospheric precipitation containing significant amounts of nutrients into the bay can shift the Redfield ratio compared with the background value up to three times.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sukhikh, L.; Dorofeyev, V. The Study of Sensitivity of the Black Sea Hydrophysical Fields Reanalysis Results to the Applied Atmospheric Forcing. Phys. Oceanogr. 2016. [Google Scholar] [CrossRef] [Green Version]
- Avila, A.; Peñuelas, J. Increasing frequency of Saharan rains over northeastern Spain and its ecological consequences. Sci. Total Environ. 1999, 228, 153–156. [Google Scholar] [CrossRef]
- Swap, R.; Garstang, M.; Greco, S.; Talbot, R.; Kållberg, P. Saharan dust in the Amazon Basin. Tellus B Chem. Phys. Meteorol. 1992, 44, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Xia, X.; Pitta, P.; Herut, B.; Rahav, E.; Berman-Frank, I.; Giannakourou, A.; Tsiola, A.; Tsagaraki, T.M.; Liu, H. Shifts in Microbial Community Structure and Activity in the Ultra-Oligotrophic Eastern Mediterranean Sea Driven by the Deposition of Saharan Dust and European Aerosols. Front. Mar. Sci. 2016, 3, 170. [Google Scholar] [CrossRef] [Green Version]
- Pitta, P.; Herut, B.; Tsagaraki, T. Impact of Aerosols (Saharan Dust and Mixed) on the East Mediterranean Oligotrophic Ecosystem, Results from Experimental Studies; Frontiers Media: Lausanne, Switzerland, 2017; p. 264. [Google Scholar]
- Ridame, C.; Guieu, C. Saharan input of phosphate to the oligotrophic water of the open western Mediterranean Sea. Limnol. Oceanogr. 2002, 47, 856–869. [Google Scholar] [CrossRef]
- Markaki, Z.; Oikonomou, K.; Kocak, M.; Kouvarakis, G.; Chaniotaki, A.; Kubilay, N.; Mihalopoulos, N. Atmospheric deposition of inorganic phosphorus in the Levantine Basin, eastern Mediterranean: Spatial and temporal variability and its role in seawater productivity. Limnol. Oceanogr. 2003, 48, 1557–1568. [Google Scholar] [CrossRef] [Green Version]
- Guieu, C.; Loÿe-Pilot, M.-D.; Benyahya, L.; Dufour, A. Spatial variability of atmospheric fluxes of metals (Al, Fe, Cd, Zn and Pb) and phosphorus over the whole Mediterranean from a one-year monitoring experiment: Biogeochemical implications. Mar. Chem. 2010, 120, 164–178. [Google Scholar] [CrossRef]
- Herut, B.; Krom, M.D.; Pan, G.; Mortimer, R. Atmospheric input of nitrogen and phosphorus to the Southeast Mediterranean: Sources, fluxes, and possible impact. Limnol. Oceanogr. 1999, 44, 1683–1692. [Google Scholar] [CrossRef] [Green Version]
- Sandroni, V.; Raimbault, P.; Migon, C.; Garcia, N.; Gouze, E. Dry atmospheric deposition and diazotrophy as sources of new nitrogen to northwestern Mediterranean oligotrophic surface waters. Deep. Sea Res. 2007, 54, 1859–1870. [Google Scholar] [CrossRef]
- Markaki, Z.; Loÿe-Pilot, M.; Violaki, K.; Benyahya, L.; Mihalopoulos, N. Variability of atmospheric deposition of dissolved nitrogen and phosphorus in the Mediterranean and possible link to the anomalous seawater N/P ratio. Mar. Chem. 2010, 120, 187–194. [Google Scholar] [CrossRef]
- Guieu, C.; Bonnet, S.; Wagener, T.; Loÿe-Pilot, M.-D. Biomass burning as a source of dissolved iron to the open ocean? Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Theodosi, C.; Markaki, Z.; Mihalopoulos, N. Iron Speciation, solubility and temporal variability in wet and dry deposition in the Eastern Mediterranean. Mar. Chem. 2010, 120, 100–107. [Google Scholar] [CrossRef]
- Moreno, T.; Querol, X.; Alastuey, A.; Viana, M.; Gibbons, W. Exotic dust incursions into central Spain: Implications for legislative controls on atmospheric particulates. Atmos. Environ. 2005, 39, 6109–6120. [Google Scholar] [CrossRef]
- Richon, C.; Dutay, J.-C.; Dulac, F.; Wang, R.; Balkanski, Y.; Nabat, P.; Aumont, O.; Desboeufs, K.; Laurent, B.; Guieu, C.; et al. Modeling the impacts of atmospheric deposition of nitrogen and desert dust-derived phosphorus on nutrients and biological budgets of the Mediterranean Sea. Prog. Oceanogr. 2018, 163, 21–39. [Google Scholar] [CrossRef]
- Humborg, C.; Conley, D.J.; Rahm, L.; Wulff, F.; Cociasu, A.; Ittekkot, V. Silicon retention in river basins: Far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. AMBIO A J. Hum. Environ. 2000, 29, 45–50. [Google Scholar] [CrossRef]
- Ragueneau, O.; Chauvaud, L.; Moriceau, B.; Leynaert, A.; Thouzeau, G.; Donval, A.; Le Loc’H, F.; Jean, F. Biodeposition by an Invasive Suspension Feeder Impacts the Biogeochemical Cycle of Si in a Coastal Ecosystem (Bay of Brest, France). Biogeochemistry 2005, 75, 19–41. [Google Scholar] [CrossRef]
- Tŕeguer, P.J.; De La Rocha, C.L. The World Ocean silica sycle. Ann. Rev. Mar. Sci. 2013, 5, 477–501. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Turner, R.E.; Justic, D.; Dortch, Q.; Wiseman, W.J.J.; Sen Gupta, B.K. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 1996, 19, 386–407. [Google Scholar] [CrossRef]
- Yunev, O.A.; Velikova, V.; Carstensen, J. Effects of changing nutrient inputs on the ratio of small pelagic fish stock and phytoplankton biomass in the Black Sea. Estuar. Coast. Shelf Sci. 2017, 197, 173–184. [Google Scholar] [CrossRef]
- Tŕeguer, P.; Nelson, D.M.; Van Bennekom, A.J.; DeMaster, D.J.; Leynaert, A.; Queguiner, B. The balance of silica in the world ocean: A re-estimate. Science 1995, 268, 375–379. [Google Scholar] [CrossRef]
- Gallisai, R.; Peters, F.; Basart, S.; Baldasano, J.M. Mediterranean basin-wide correlations between Saharan dust deposition and ocean chlorophyll concentration. Biogeosciences 2012, 9, 8611–8639. [Google Scholar] [CrossRef] [Green Version]
- Ternon, E.; Guieu, C.; Loÿe-Pilot, M.-D.; Leblond, N.; Bosc, E.; Gasser, B.; Miquel, J.-C.; Martín, J. The impact of Saharan dust on the particulate export in the water column of the North Western Mediterranean Sea. Biogeosciences 2010, 7, 809–826. [Google Scholar] [CrossRef] [Green Version]
- Gallisai, R. Saharan Dust Deposition Effects on Production in the Mediterranean Sea. Ph.D. Thesis, Universitat Politècnica de Catalunya, Departament d’Enginyeria Civil i Ambiental, Barcelona, Spain, 2016. Available online: http://hdl.handle.net/2117/105829 (accessed on 14 May 2021).
- Pautova, L.A.; Mikaelyan, A.S.; Silkin, V.A. Structure of plankton phytocoenoses in the shelf waters of the northeastern Black Sea during The Emiliania Huxley bloom in 2002–2005. Oceanology 2007, 3, C377–C385. [Google Scholar] [CrossRef]
- Milliman, J.D. Production and accumulation of calcium carbonate in the ocean: Budget of a non-steady state. Glob. Biogeochem. Cycles 1993, 7, 927–957. [Google Scholar] [CrossRef]
- Yli-Tuomi, T.; Venditte, L.; Hopke, P.K.; Basunia, M.; Landsberger, S.; Viisanen, Y.; Paatero, J. Composition of the Finnish Arctic aerosol: Collection and analysis of historic filter samples. Atmos. Environ. 2003, 37, 2355–2364. [Google Scholar] [CrossRef]
- Vinogradova, A.A. Anthropogenic pollutants in the Russian Arctic atmosphere: Sources and sinks in spring and summer. Atmos. Environ. 2000, 34, 5151–5160. [Google Scholar] [CrossRef]
- Popovicheva, O.B.; Makshtas, A.P.; Movchan, V.V.; Persiantseva, N.M.; Timofeev, M.A.; Sitnikov, N.M. Aerosol component of the atmospheric surface layer according observations of the expedition “North-2015”. Arct. Antarct. Res. 2017, 4, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Kalinskaya, D.V.; Varenik, A.V. The research of the dust transport impact on the biogeochemical characteristics of the Black Sea surface layer. In Proceedings of the 25th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Novosibirsk, Russia, 30 June–5 July 2019; Volume 11208, p. 1120845. [Google Scholar]
- Solorzano, L. Determination of ammonia in natural waters by phenolhypochlorite method. Limnol. Oceanogr. 1969, 14, 799–801. [Google Scholar]
- Sapozhnikov, V.V. Guidelines for the Chemical Analysis of Sea and Fresh Waters in the Environmental Monitoring of Fishery Water Bodies and Promising Areas for Fishing in the World Ocean; VNIRO: Moscow, Russia, 2003; p. 202. (In Russian) [Google Scholar]
- Oradovsky, S.G. Guidance on the Methods of Chemical Analysis of Seawater; Hydrometeoizdat: St. Petersburg, Russia, 1993; p. 264. (In Russian) [Google Scholar]
- Bordovskiy, O.K.; Chernyakova, A.M. (Eds.) Modern Methods of the Ocean Hydrochemical Investigations; P.P. Shirshov Institute of Oceanology: Moscow, Russia, 1992; p. 200. (In Russian) [Google Scholar]
- Kalinskaya, D.; Varenik, A.; Papkova, A. Phosphorus and silicon as markers of dust aerosol transport over the Black Sea region. Mod. Probl. Remote Sens. Earth Space 2018, 15, 217–225. [Google Scholar]
- Kalinskaya, D.; Kudinov, O. Methodology of ground aerosol sources determination based on AERONET and HYSPLIT models data results. In Proceeding of the 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Irkutsk, Russian, 3–7 July 2017. [Google Scholar]
- Penenko, V.V.; Korotkov, M.G. Application of numerical models to predicting emergency and environmentally unfavorable situations in the atmosphere. Opt. Atmos. 1998, 11, 567–572. (In Russian) [Google Scholar]
- Poddubny, V.A.; Nagovitsyna, E.S. Methods of back-trajectories for the interpretation of monitoring data. Geoinformation technologies and space monitoring: Materials. In Proceedings of the III Young Scientists Conference, Rostov-on-Don, Russia, 6–11 September 2010; pp. 96–100. (In Russian). [Google Scholar]
- Sviridenkov, M.A. Determination of the characteristics of atmospheric aerosol from spectral measurements of transparency and small-angle scattering. Opt. Atmos. 2001, 14, 1115–1118. (In Russian) [Google Scholar]
- Veretennikov, V.V.; Menshchikova, S.S. Features of reconstructing aerosol microstructural parameters from aerosol optical thickness measurements. Part I. Technique for solving the inverse problem. Opt. Atmos. Ocean 2013, 26, 306–312. (In Russian) [Google Scholar]
- Baumann, K.; Stohl, A. Validation of a long-range trajectory model using gas balloon tracks from the Gordon Bennett Cup 95. J. Appl. Meteorol. 1997, 36, 711–720. [Google Scholar] [CrossRef]
- Brzezinski, M.A. The Si:C:N ratio of marine diatoms: Interspecific variability and the effect of some environmental variables. J. Phycol. 1985, 21, 347–357. [Google Scholar] [CrossRef]
- Cochran, J.K.; Bokuniewicz, H.J.; Yager, P.L. Encyclopedia of Ocean Sciences, 3rd ed.; Elsevier Science & Technology: San Diego, CA, USA, 2019. [Google Scholar]
- Cociasu, A.; Dorogan, L.; Humborg, C.; Popa, L. Long-term ecological changes in Romanian coastal Waters of the Black Sea. Mar. Pollut. Bull. 1996, 32, 32–38. [Google Scholar] [CrossRef]
- Medinets, S.; Medinets, V. Investigations of atmospheric wet and dry nutrient deposition to marine surface in western part of the Black Sea. Turk. J. Fish. Aquat. Sci. 2012, 12, 497–505. [Google Scholar] [CrossRef]
- Yunev, O.A.; Vedernikov, V.I.; Basturk, O.; Yilmaz, A.; Kideyes, A.E.; Moncheva, S.; Konovalov, S.K. Long-term variations of surface chlorophyll a and primary production in the open Black Sea. Mar. Ecol. Prog. Ser. 2002, 230, 11–28. [Google Scholar] [CrossRef]
- Kideys, A.E. Ecology. Fall and rise of the Black Sea ecosystem. Science 2002, 30, 1482–1484. [Google Scholar] [CrossRef]
- Prospero, J.M. Saharan dust transport over the North Atlantic Ocean and Mediterranean: An overview. In The Impact of Desert Dust Across the Mediterranean; Guerzoni, S., Chester, R., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1996; pp. 133–151. [Google Scholar]
- Pease, P.P.; Tchakerian, V.P.; Tindale, N.W. Aerosols over the Arabian Sea: Geochemistry and source areas for aeolian desert dust. J. Arid Environ. 1998, 39, 477–496. [Google Scholar] [CrossRef]
- Kotta, D.; Kitsiou, D. Exploring Possible Influence of Dust Episodes on Surface Marine Chlorophyll Concentrations. J. Mar. Sci. Eng. 2019, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Schulz, M.; Prospero, J.M.; Baker, A.R.; Dentener, F.; Ickes, L.; Liss, P.S.; Mahowald, N.M.; Nickovic, S.; García-Pando, C.P.; Rodríguez, S.; et al. Atmospheric Transport and Deposition of Mineral Dust to the Ocean: Implications for Research Needs. Environ. Sci. Technol. 2012, 46, 10390–10404. [Google Scholar] [CrossRef] [PubMed]
- Richon, C.; Dutay, J.-C.; Dulac, F.; Wang, R.; Balkanski, Y. Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea. Biogeosciences 2018, 15, 2499–2524. [Google Scholar] [CrossRef] [Green Version]
- Tsagaraki, T.M.; Herut, B.; Rahav, E.; Frank, I.R.B.; Tsiola, A.; Tsapakis, M.; Giannakourou, A.; Gogou, A.; Panagiotopoulos, C.; Violaki, K.; et al. Atmospheric Deposition Effects on Plankton Communities in the Eastern Mediterranean: A Mesocosm Experimental Approach. Front. Mar. Sci. 2017, 4, 210. [Google Scholar] [CrossRef] [Green Version]
Nitrogen | Phosphorus | Silicon | ||||
---|---|---|---|---|---|---|
Wet-Only Sampler | Open Sampler | Wet-Only Sampler | Open Sampler | Wet-Only Sampler | Open Sampler | |
Amount of data | 391 | 361 | 385 | 354 | 387 | 357 |
Max, μM | 464.8 | 799.6 | 18.2 | 37.1 | 34.5 | 36.8 |
Min, μM | 19.5 | 17.0 | 0.0 | 0.0 | 0.0 | 0.0 |
VWM, μM | 75.6 | 90.5 | 0.4 | 1.3 | 0.9 | 2.0 |
St. deviation, μM | 68.4 | 97.2 | 1.7 | 3.5 | 3.1 | 5.1 |
Season | N:P | Si:P | N:P | Si:P |
---|---|---|---|---|
Background | after Deposition | |||
Spring | 129 | 62 | 326 | 90 |
Summer | 59 | 38 | 134 | 119 |
Autumn | 78 | 48 | 248 | 61 |
Winter | 188 | 51 | 217 | 64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varenik, A.V.; Kalinskaya, D.V. The Effect of Dust Transport on the Concentration of Chlorophyll-A in the Surface Layer of the Black Sea. Appl. Sci. 2021, 11, 4692. https://doi.org/10.3390/app11104692
Varenik AV, Kalinskaya DV. The Effect of Dust Transport on the Concentration of Chlorophyll-A in the Surface Layer of the Black Sea. Applied Sciences. 2021; 11(10):4692. https://doi.org/10.3390/app11104692
Chicago/Turabian StyleVarenik, Alla V., and Darya V. Kalinskaya. 2021. "The Effect of Dust Transport on the Concentration of Chlorophyll-A in the Surface Layer of the Black Sea" Applied Sciences 11, no. 10: 4692. https://doi.org/10.3390/app11104692
APA StyleVarenik, A. V., & Kalinskaya, D. V. (2021). The Effect of Dust Transport on the Concentration of Chlorophyll-A in the Surface Layer of the Black Sea. Applied Sciences, 11(10), 4692. https://doi.org/10.3390/app11104692