Legacy of Past Mining Activity Affecting the Present Distribution of Dissolved and Particulate Mercury and Methylmercury in an Estuarine Environment (Nalón River, Northern Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environmental Setting
2.2. Sampling and Analysis
2.3. Exploratory Multivariate Data Analysis
3. Results and Discussion
3.1. Physico-Chemical Parameters of the Water Column
3.2. Suspended Particulate Matter: Distribution, Grain Size and Sources
3.3. Dissolved and Particulate Hg and MeHg: The Effect of the River Discharge
3.3.1. Occurrence and Distribution of Dissolved and Particulate Hg and MeHg
3.3.2. Distribution Coefficients (KD)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cossa, D.; Elbaz-Poulichet, F.; Nieto, J.M. Mercury in the Tinto-Odiel Estuarine System (Gulf of Cádiz, Spain): Sources and Dispersion. Aquat. Geochem. 2001, 7, 1–12. [Google Scholar] [CrossRef]
- Balcom, P.H.; Hammerschmidt, C.R.; Fitzgerald, W.F.; Lamborg, C.H.; O’Connor, J.S. Seasonal Distributions and Cycling of Mercury and Methylmercury in the Waters of New York/New Jersey Harbor Estuary. Mar. Chem. 2008, 109, 1–17. [Google Scholar] [CrossRef]
- Schäfer, J.; Castelle, S.; Blanc, G.; Dabrin, A.; Masson, M.; Lanceleur, L.; Bossy, C. Mercury Methylation in the Sediments of a Macrotidal Estuary (Gironde Estuary, South-West France). Estuar. Coast. Shelf Sci. 2010, 90, 80–92. [Google Scholar] [CrossRef]
- Mao, L.; Liu, X.; Wang, B.; Lin, C.; Xin, M.; Zhang, B.-T.; Wu, T.; He, M.; Ouyang, W. Occurrence and Risk Assessment of Total Mercury and Methylmercury in Surface Seawater and Sediments from the Jiaozhou Bay, Yellow Sea. Sci. Total Environ. 2020, 714, 136539. [Google Scholar] [CrossRef]
- Covelli, S.; Petranich, E.; Pavoni, E.; Signore, S. Can Sediments Contaminated by Mining Be a Source of Mercury in the Coastal Environment Due to Dredging? Evidence from Thermo-Desorption and Chemical Speciation. Bull. Environ. Contam. Toxicol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.H.; Cech, J.J.; Lagunas-Solar, M.C. Bioavailability of Methylmercury to Sacramento Blackfish (Orthodon Microlepidotus): Dissolved Organic Carbon Effects. Environ. Toxicol. Chem. 1998, 17, 695–701. [Google Scholar] [CrossRef]
- Bocchetti, R.; Fattorini, D.; Pisanelli, B.; Macchia, S.; Oliviero, L.; Pilato, F.; Pellegrini, D.; Regoli, F. Contaminant Accumulation and Biomarker Responses in Caged Mussels, Mytilus Galloprovincialis, to Evaluate Bioavailability and Toxicological Effects of Remobilized Chemicals during Dredging and Disposal Operations in Harbour Areas. Aquat. Toxicol. 2008, 89, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Covelli, S.; Acquavita, A.; Piani, R.; Predonzani, S.; De Vittor, C. Recent Contamination of Mercury in an Estuarine Environment (Marano Lagoon, Northern Adriatic, Italy). Estuar. Coast. Shelf Sci. 2009, 82, 273–284. [Google Scholar] [CrossRef]
- Cusack, M.; Arrieta, J.M.; Duarte, C.M. Source Apportionment and Elemental Composition of Atmospheric Total Suspended Particulates (TSP) Over the Red Sea Coast of Saudi Arabia. Earth Syst. Environ. 2020, 4, 777–788. [Google Scholar] [CrossRef]
- Hsu-Kim, H.; Kucharzyk, K.H.; Zhang, T.; Deshusses, M.A. Mechanisms Regulating Mercury Bioavailability for Methylating Microorganisms in the Aquatic Environment: A Critical Review. Environ. Sci. Technol. 2013, 47, 2441–2456. [Google Scholar] [CrossRef] [PubMed]
- Cesário, R.; Monteiro, C.E.; Nogueira, M.; O’Driscoll, N.J.; Caetano, M.; Hintelmann, H.; Mota, A.M.; Canário, J. Mercury and Methylmercury Dynamics in Sediments on a Protected Area of Tagus Estuary (Portugal). Water Air Soil Pollut. 2016, 227, 475. [Google Scholar] [CrossRef]
- Cesário, R.; Hintelmann, H.; O’Driscoll, N.J.; Monteiro, C.E.; Caetano, M.; Nogueira, M.; Mota, A.M.; Canário, J. Biogeochemical Cycle of Mercury and Methylmercury in Two Highly Contaminated Areas of Tagus Estuary (Portugal). Water Air Soil Pollut. 2017, 228, 257. [Google Scholar] [CrossRef]
- Petranich, E.; Croce, S.; Crosera, M.; Pavoni, E.; Faganeli, J.; Adami, G.; Covelli, S. Mobility of Metal(Loid)s at the Sediment-Water Interface in Two Tourist Port Areas of the Gulf of Trieste (Northern Adriatic Sea). Environ. Sci. Pollut. Res. 2018, 25, 26887–26902. [Google Scholar] [CrossRef] [PubMed]
- Cesário, R.; Mota, A.M.; Caetano, M.; Nogueira, M.; Canário, J. Mercury and Methylmercury Transport and Fate in the Water Column of Tagus Estuary (Portugal). Mar. Pollut. Bull. 2018, 127, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Sanford, L.P.; Panageotou, W.; Halka, J.P. Tidal Resuspension of Sediments in Northern Chesapeake Bay. Mar. Geol. 1991, 97, 87–103. [Google Scholar] [CrossRef]
- Arfi, R.; Guiral, D.; Bouvy, M. Wind Induced Resuspension in a Shallow Tropical Lagoon. Estuar. Coast. Shelf Sci. 1993, 36, 587–604. [Google Scholar] [CrossRef] [Green Version]
- Kalnejais, L.H.; Martin, W.R.; Signell, R.P.; Bothner, M.H. Role of Sediment Resuspension in the Remobilization of Particulate-Phase Metals from Coastal Sediments. Environ. Sci. Technol. 2007, 41, 2282–2288. [Google Scholar] [CrossRef]
- Schoellhamer, D.H. Anthropogenic Sediment Resuspension Mechanisms in a Shallow Microtidal Estuary. Estuar. Coast. Shelf Sci. 1996, 43, 533–548. [Google Scholar] [CrossRef]
- Bloom, N.S.; Lasorsa, B.K. Changes in Mercury Speciation and the Release of Methyl Mercury as a Result of Marine Sediment Dredging Activities. Sci. Total Environ. 1999, 237–238, 379–385. [Google Scholar] [CrossRef]
- Lewis, M.A.; Weber, D.E.; Stanley, R.S.; Moore, J.C. Dredging Impact on an Urbanized Florida Bayou: Effects on Benthos and Algal-Periphyton. Environ. Pollut. 2001, 115, 161–171. [Google Scholar] [CrossRef]
- Moog, O.; Stubauer, I.; Haimann, M.; Habersack, H.; Leitner, P. Effects of Harbour Excavating and Dredged Sediment Disposal on the Benthic Invertebrate Fauna of River Danube (Austria). Hydrobiologia 2018, 814, 109–120. [Google Scholar] [CrossRef]
- Kim, E.H.; Mason, R.P.; Porter, E.T.; Soulen, H.L. The Effect of Resuspension on the Fate of Total Mercury and Methyl Mercury in a Shallow Estuarine Ecosystem: A Mesocosm Study. Mar. Chem. 2004, 86, 121–137. [Google Scholar] [CrossRef]
- Ordóñez, A.; Álvarez, R.; Loredo, J. Asturian Mercury Mining District (Spain) and the Environment: A Review. Environ. Sci. Pollut. Res. 2013, 20, 7490–7508. [Google Scholar] [CrossRef]
- Silva, V.; Loredo, J.; Fernández-Martínez, R.; Larios, R.; Ordóñez, A.; Gómez, B.; Rucandio, I. Arsenic Partitioning among Particle-Size Fractions of Mine Wastes and Stream Sediments from Cinnabar Mining Districts. Environ. Geochem. Health 2014, 36, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Loredo, J.; Ordóñez, A.; Gallego, J.R.; Baldo, C.; García-Iglesias, J. Geochemical Characterisation of Mercury Mining Spoil Heaps in the Area of Mieres (Asturias, Northern Spain). J. Geochem. Explor. 1999, 67, 377–390. [Google Scholar] [CrossRef]
- Loredo, J.; Ordóñez, A.; Pendás, F. Hydrogeological and Geochemical Interactions of Adjoining Mercury and Coal Mine Spoil Heaps in the Morgao Catchment (Mieres, North-Western Spain). Geol. Soc. Spec. Publ. 2002, 198, 327–336. [Google Scholar] [CrossRef]
- Loredo, J.; Alvarez, R.; Ordonez, A. Release of Toxic Metals and Metalloids from Los Rueldos Mercury Mine (Asturias, Spain). Sci. Total Environ. 2005, 340, 247–260. [Google Scholar] [CrossRef]
- Loredo, J.; Ordonez, A.; Alvarez, R. Environmental Impact of Toxic Metals and Metalloids from the Muñón Cimero Mercury-Mining Area (Asturias, Spain). J. Hazard. Mater. 2006, 136, 455–467. [Google Scholar] [CrossRef]
- Fernández-Martínez, R.; Loredo, J.; Ordóñez, A.; Rucandio, M.I. Distribution and Mobility of Mercury in Soils from an Old Mining Area in Mieres, Asturias (Spain). Sci. Total Environ. 2005, 346, 200–212. [Google Scholar] [CrossRef]
- Fernández-Martínez, R.; Loredo, J.; Ordóñez, A.; Rucandio, M.I. Physicochemical Characterization and Mercury Speciation of Particle-Size Soil Fractions from an Abandoned Mining Area in Mieres, Asturias (Spain). Environ. Pollut. 2006, 142, 217–226. [Google Scholar] [CrossRef]
- Loredo, J. Historic Unreclaimed Mercury Mines in Asturias (Northwestern Spain): Environmental Approaches. In Assessing and Managing Mercury from Historic and Current Mining Activities; U.S. Environmental Protection Agency: San Francisco, CA, USA, 2000; pp. 175–180. [Google Scholar]
- Loredo, J.; Ordóñez, A.; Álvarez, R. The Problem of Hg Contamination in Asturias (Spain). RMZ Mater. Geoenviron. 2004, 51, 133–136. [Google Scholar]
- Garcia-Ordiales, E.; Covelli, S.; Rico, J.M.; Roqueñí, N.; Fontolan, G.; Flor-Blanco, G.; Cienfuegos, P.; Loredo, J. Occurrence and Speciation of Arsenic and Mercury in Estuarine Sediments Affected by Mining Activities (Asturias, Northern Spain). Chemosphere 2018, 198, 281–289. [Google Scholar] [CrossRef]
- Garcia-Ordiales, E.; Cienfuegos, P.; Roqueñí, N.; Covelli, S.; Flor-Blanco, G.; Fontolan, G.; Loredo, J. Historical Accumulation of Potentially Toxic Trace Elements Resulting from Mining Activities in Estuarine Salt Marshes Sediments of the Asturias Coastline (Northern Spain). Environ. Sci. Pollut. Res. 2019, 26, 3115–3128. [Google Scholar] [CrossRef]
- García-Ordiales, E.; Flor-Blanco, G.; Roqueñí, N.; Covelli, S.; Cienfuegos, P.; Álvarez, R.; Fontolan, G.; Loredo, J. Anthropocene Footprint in the Nalón Estuarine Sediments (Northern Spain). Mar. Geol. 2020, 424, 106167. [Google Scholar] [CrossRef]
- Garcia-Ordiales, E.; Roqueñí, N.; Loredo, J. Mercury Bioaccumulation by Juncus Maritimus Grown in a Hg Contaminated Salt Marsh (Northern Spain). Mar. Chem. 2020, 226, 103859. [Google Scholar] [CrossRef]
- García-Ordiales, E.; Covelli, S.; Braidotti, G.; Petranich, E.; Pavoni, E.; Acquavita, A.; Sanz-Prada, L.; Roqueñí, N.; Loredo, J. Mercury and Arsenic Mobility in Resuspended Contaminated Estuarine Sediments (Asturias, Spain): A Laboratory-Based Study. Sci. Total Environ. 2020, 744, 140870. [Google Scholar] [CrossRef] [PubMed]
- European Parliament, Council of the European Union. Water Framework Directive; 2000/60/EC; European Union: Brussels, Belgium, 2000. [Google Scholar]
- European Parliament, Council of the European Union. Establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive); 2008/56/EC; European Union: Brussels, Belgium, 2008. [Google Scholar]
- Ceñal, R.C.; Flor, G. Evolución Reciente Del Estuario Del Nalón (Asturias). Cuaternario Geomorfol. 1993, 7, 23–34. [Google Scholar]
- Flor, G.; Ceñal, R.C.; González, M.S.; Ortega, M.I. Aspectos Morfológicos, Dinámicos y Sedimentológicos Del Estuario Del Nalón (Asturias, Noroeste de España). Trab. Geol. 1998, 20, 3–39. [Google Scholar]
- Flor-Blanco, G.; Pando, L.; Morales, J.A.; Flor, G. Evolution of Beach–Dune Fields Systems Following the Construction of Jetties in Estuarine Mouths (Cantabrian Coast, NW Spain). Environ. Earth Sci. 2015, 73, 1317–1330. [Google Scholar] [CrossRef]
- Loredo, J.; Pereira, A.; Ordóñez, A. Untreated Abandoned Mercury Mining Works in a Scenic Area of Asturias (Spain). Environ. Int. 2003, 29, 481–491. [Google Scholar] [CrossRef]
- Ordoñez, A.; Silva, V.; Galán, P.; Loredo, J.; Rucandio, I. Arsenic Input into the Catchment of the River Caudal (Northwestern Spain) from Abandoned Hg Mining Works: Effect on Water Quality. Environ. Geochem. Health 2014, 36, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Amouroux, D.; Tessier, E.; Pécheyran, C.; Donard, O.F.X. Sampling and Probing Volatile Metal(Loid) Species in Natural Waters by in-Situ Purge and Cryogenic Trapping Followed by Gas Chromatography and Inductively Coupled Plasma Mass Spectrometry (P-CT–GC–ICP/MS). Anal. Chim. Acta 1998, 377, 241–254. [Google Scholar] [CrossRef]
- Rodríguez-González, P.; Ruiz Encinar, J.; García Alonso, J.I.; Sanz-Medel, A. Determination of Butyltin Compounds in Coastal Sea-Water Samples Using Isotope Dilution GC-ICP-MS. J. Anal. At. Spectrom. 2002, 17, 824–830. [Google Scholar] [CrossRef]
- Bouchet, S.; Tessier, E.; Monperrus, M.; Bridou, R.; Clavier, J.; Thouzeau, G.; Amouroux, D. Measurements of Gaseous Mercury Exchanges at the Sediment–Water, Water–Atmosphere and Sediment–Atmosphere Interfaces of a Tidal Environment (Arcachon Bay, France). J. Environ. Monit. 2011, 13, 1351–1359. [Google Scholar] [CrossRef]
- Rodriguez Martin-Doimeadios, R.C.; Monperrus, M.; Krupp, E.; Amouroux, D.; Donard, O.F.X. Using Speciated Isotope Dilution with GC− Inductively Coupled Plasma MS to Determine and Unravel the Artificial Formation of Monomethylmercury in Certified Reference Sediments. Anal. Chem. 2003, 75, 3202–3211. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-González, P.; Monperrus, M.; García Alonso, J.I.; Amouroux, D.; Donard, O.F.X. Comparison of Different Numerical Approaches for Multiple Spiking Species-Specific Isotope Dilution Analysis Exemplified by the Determination of Butyltin Species in Sediments. J. Anal. At. Spectrom. 2007, 22, 1373–1382. [Google Scholar] [CrossRef]
- Rodriguez-Gonzalez, P.; Bouchet, S.; Monperrus, M.; Tessier, E.; Amouroux, D. In Situ Experiments for Element Species-Specific Environmental Reactivity of Tin and Mercury Compounds Using Isotopic Tracers and Multiple Linear Regression. Environ. Sci. Pollut. Res. 2013, 20, 1269–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EPA. EPA Method 3052. Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices; U.S. Environmental Protection Agency: Washington, DC, USA, 1996.
- Smilde, A.; Bro, R.; Geladi, P. Multi-Way Analysis with Applications in the Chemical Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 0-470-01211-0. [Google Scholar]
- Oliveri, P.; Malegori, C.; Casale, M. Chemometrics: Multivariate Analysis of Chemical Data. In Chemical Analysis of Food, 2nd ed.; Pico, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-813266-1. [Google Scholar]
- Leardi, R.; Melzi, C.; Polotti, G. CAT (Chemometric Agile Tool). 2019. Available online: http://Gruppochemiometria.It/Index.Php/Software (accessed on 3 September 2019).
- Akter, A.; Tanim, A.H. Salinity Distribution in River Network of a Partially Mixed Estuary. J. Waterw. Port. C 2021, 147, 04020055. [Google Scholar] [CrossRef]
- Covelli, S.; Piani, R.; Kotnik, J.; Horvat, M.; Faganeli, J.; Brambati, A. Behaviour of Hg Species in a Microtidal Deltaic System: The Isonzo River Mouth (Northern Adriatic Sea). Sci. Total Environ. 2006, 368, 210–223. [Google Scholar] [CrossRef] [PubMed]
- Pavoni, E.; Crosera, M.; Petranich, E.; Adami, G.; Faganeli, J.; Covelli, S. Partitioning and Mixing Behaviour of Trace Elements at the Isonzo/Soča River Mouth (Gulf of Trieste, Northern Adriatic Sea). Mar. Chem. 2020, 223, 103800. [Google Scholar] [CrossRef]
- Santos-Echeandía, J.; Caetano, M.; Brito, P.; Canario, J.; Vale, C. The Relevance of Defining Trace Metal Baselines in Coastal Waters at a Regional Scale: The Case of the Portuguese Coast (SW Europe). Mar. Environ. Res. 2012, 79, 86–99. [Google Scholar] [CrossRef] [Green Version]
- Loredo, J.; Petit-Domínguez, M.D.; Fernández-Martínez, R.; Alvarez, R.; Rucandio, M.I. Surface Water Monitoring in the Mercury Mining District of Asturias (Spain). J. Hazard. Mater. 2010, 176, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Seelen, E.A.; Massey, G.M.; Mason, R.P. Role of Sediment Resuspension on Estuarine Suspended Particulate Mercury Dynamics. Environ. Sci. Technol. 2018, 52, 7736–7744. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Song, Y.; Adediran, G.A.; Jiang, T.; Reis, A.T.; Pereira, E.; Skyllberg, U.; Björn, E. Mercury Transformations in Resuspended Contaminated Sediment Controlled by Redox Conditions, Chemical Speciation and Sources of Organic Matter. Geochim. Cosmochim. Acta 2018, 220, 158–179. [Google Scholar] [CrossRef]
- Wang, S.; Jia, Y.; Wang, S.; Wang, X.; Wang, H.; Zhao, Z.; Liu, B. Total Mercury and Monomethylmercury in Water, Sediments, and Hydrophytes from the Rivers, Estuary, and Bay along the Bohai Sea Coast, Northeastern China. Appl. Geochem. 2009, 24, 1702–1711. [Google Scholar] [CrossRef]
- Taylor, V.F.; Buckman, K.L.; Seelen, E.A.; Mazrui, N.M.; Balcom, P.H.; Mason, R.P.; Chen, C.Y. Organic Carbon Content Drives Methylmercury Levels in the Water Column and in Estuarine Food Webs across Latitudes in the Northeast United States. Environ. Pollut. 2019, 246, 639–649. [Google Scholar] [CrossRef]
- Kim, E.-H.; Mason, R.P.; Porter, E.T.; Soulen, H.L. The Impact of Resuspension on Sediment Mercury Dynamics, and Methylmercury Production and Fate: A Mesocosm Study. Mar. Chem. 2006, 102, 300–315. [Google Scholar] [CrossRef]
- Mason, R.P.; Benoit, J.M. Organomercury compounds in the environment. In Organometallics in the Environment; Craig, P., Ed.; John Wiley & Sons: New York, NY, USA, 2003; pp. 57–99. [Google Scholar]
- Heyes, A.; Mason, R.P.; Kim, E.H.; Sunderland, E. Mercury Methylation in Estuaries: Insights from Using Measuring Rates Using Stable Mercury Isotopes. Mar. Chem. 2006, 102, 134–147. [Google Scholar] [CrossRef]
- Covelli, S.; Faganeli, J.; Horvat, M.; Brambati, A. Mercury Contamination of Coastal Sediments as the Result of Long-Term Cinnabar Mining Activity (Gulf of Trieste, Northern Adriatic Sea). Appl. Geochem. 2001, 16, 541–558. [Google Scholar] [CrossRef]
- Acquavita, A.; Emili, A.; Covelli, S.; Faganeli, J.; Predonzani, S.; Koron, N.; Carrasco, L. The Effects of Resuspension on the Fate of Hg in Contaminated Sediments (Marano and Grado Lagoon, Italy): Short-Term Simulation Experiments. Estuar. Coast. Shelf Sci. 2012, 113, 32–40. [Google Scholar] [CrossRef]
- Ullrich, S.M.; Tanton, T.W.; Abdrashitova, S.A. Mercury in the Aquatic Environment: A Review of Factors Affecting Methylation. Crit. Rev. Environ. Sci. Technol. 2001, 31, 241–293. [Google Scholar] [CrossRef]
- Ravichandran, M. Interactions between Mercury and Dissolved Organic Matter—A Review. Chemosphere 2004, 55, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Whalin, L.; Kim, E.-H.; Mason, R. Factors Influencing the Oxidation, Reduction, Methylation and Demethylation of Mercury Species in Coastal Waters. Mar. Chem. 2007, 107, 278–294. [Google Scholar] [CrossRef]
- Hines, M.E.; Faganeli, J.; Adatto, I.; Horvat, M. Microbial Mercury Transformations in Marine, Estuarine and Freshwater Sediment Downstream of the Idrija Mercury Mine, Slovenia. Appl. Geochem. 2006, 21, 1924–1939. [Google Scholar] [CrossRef]
- Gosnell, K.; Balcom, P.; Ortiz, V.; DiMento, B.; Schartup, A.; Greene, R.; Mason, R. Seasonal Cycling and Transport of Mercury and Methylmercury in the Turbidity Maximum of the Delaware Estuary. Aquat. Geochem. 2016, 22, 313–336. [Google Scholar] [CrossRef]
- Heyes, A.; Miller, C.; Mason, R.P. Mercury and Methylmercury in Hudson River Sediment: Impact of Tidal Resuspension on Partitioning and Methylation. Mar. Chem. 2004, 90, 75–89. [Google Scholar] [CrossRef]
- Driscoll, C.T.; Blette, V.; Yan, C.; Schofield, C.L.; Munson, R.; Holsapple, J. The Role of Dissolved Organic Carbon in the Chemistry and Bioavailability of Mercury in Remote Adirondack Lakes. Water Air Soil Pollut. 1995, 80, 499–508. [Google Scholar] [CrossRef]
- Luengen, A.C.; Fisher, N.S.; Bergamaschi, B.A. Dissolved Organic Matter Reduces Algal Accumulation of Methylmercury. Environ. Toxicol. Chem. 2012, 31, 1712–1719. [Google Scholar] [CrossRef]
- Lee, C.S.; Fisher, N.S. Bioaccumulation of Methylmercury in a Marine Diatom and the Influence of Dissolved Organic Matter. Mar. Chem. 2017, 197, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Turner, A. Diagnosis of Chemical Reactivity and Pollution Sources from Particulate Trace Metal Distributions in Estuaries. Estuar. Coast. Shelf Sci. 1999, 48, 177–191. [Google Scholar] [CrossRef]
- Hatje, V.; Birch, G.F.; Hill, D.M. Spatial and Temporal Variability of Particulate Trace Metals in Port Jackson Estuary, Australia. Estuar. Coast. Shelf Sci. 2001, 53, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Turner, A. Trace-Metal Partitioning in Estuaries: Importance of Salinity and Particle Concentration. Mar. Chem. 1996, 54, 27–39. [Google Scholar] [CrossRef]
- EPA. Understanding Variation in Partition Coefficient, Kd, Values; U.S. Environmental Protection Agency: Washington, DC, USA, 1999.
- Gagnon, C.; Saulnier, I. Distribution and Fate of Metals in the Dispersion Plume of a Major Municipal Effluent. Environ. Pollut. 2003, 124, 47–55. [Google Scholar] [CrossRef]
- La Colla, N.S.; Negrin, V.L.; Marcovecchio, J.E.; Botté, S.E. Dissolved and Particulate Metals Dynamics in a Human Impacted Estuary from the SW Atlantic. Estuar. Coast. Shelf Sci. 2015, 166, 45–55. [Google Scholar] [CrossRef]
- Stoichev, T.; Amouroux, D.; Monperrus, M.; Point, D.; Tessier, E.; Bareille, G.; Donard, O.F.X. Mercury in Surface Waters of a Macrotidal Urban Estuary (River Adour, South-West France). Chem. Ecol. 2006, 22, 137–148. [Google Scholar] [CrossRef]
- Turner, A.; Millward, G.E. Particle Dynamics and Trace Metal Reactivity in Estuarine Plumes. Estuar. Coast. Shelf Sci. 2000, 50, 761–774. [Google Scholar] [CrossRef]
- Vignati, D.; Dominik, J. The Role of Coarse Colloids as a Carrier Phase for Trace Metals in Riverine Systems. Aquat. Sci. 2003, 65, 129–142. [Google Scholar] [CrossRef]
River Discharge | Hg | MeHg | Fe | Mn | |
---|---|---|---|---|---|
Low | Min | 5.34 | 5.08 | 6.71 | 7.01 |
Max | 5.99 | 6.24 | 7.41 | 7.39 | |
Average | 5.66 ± 0.16 | 5.64 ± 0.39 | 6.96 ± 0.19 | 7.20 ± 0.10 | |
Normal | Min | 5.15 | 5.37 | 6.97 | 6.72 |
Max | 6.04 | 6.45 | 7.41 | 7.65 | |
Average | 6.65 ± 0.21 | 5.83 ± 0.31 | 7.21 ± 0.15 | 7.17 ± 0.20 | |
High | Min | 5.15 | 4.81 | 7.44 | 7.63 |
Max | 6.27 | 6.18 | 7.87 | 8.32 | |
Average | 5.70 ± 0.36 | 5.57 ± 0.36 | 7.65 ± 0.15 | 7.89 ± 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavoni, E.; García-Ordiales, E.; Covelli, S.; Cienfuegos, P.; Roqueñí, N. Legacy of Past Mining Activity Affecting the Present Distribution of Dissolved and Particulate Mercury and Methylmercury in an Estuarine Environment (Nalón River, Northern Spain). Appl. Sci. 2021, 11, 4396. https://doi.org/10.3390/app11104396
Pavoni E, García-Ordiales E, Covelli S, Cienfuegos P, Roqueñí N. Legacy of Past Mining Activity Affecting the Present Distribution of Dissolved and Particulate Mercury and Methylmercury in an Estuarine Environment (Nalón River, Northern Spain). Applied Sciences. 2021; 11(10):4396. https://doi.org/10.3390/app11104396
Chicago/Turabian StylePavoni, Elena, Efren García-Ordiales, Stefano Covelli, Pablo Cienfuegos, and Nieves Roqueñí. 2021. "Legacy of Past Mining Activity Affecting the Present Distribution of Dissolved and Particulate Mercury and Methylmercury in an Estuarine Environment (Nalón River, Northern Spain)" Applied Sciences 11, no. 10: 4396. https://doi.org/10.3390/app11104396
APA StylePavoni, E., García-Ordiales, E., Covelli, S., Cienfuegos, P., & Roqueñí, N. (2021). Legacy of Past Mining Activity Affecting the Present Distribution of Dissolved and Particulate Mercury and Methylmercury in an Estuarine Environment (Nalón River, Northern Spain). Applied Sciences, 11(10), 4396. https://doi.org/10.3390/app11104396