# Electronically Tunable Mixed-Mode Universal Filter Employing a Single Active Block and a Minimum Number of Passive Components

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## Featured Application

**Active analog filters are widely used for frequency duplexing in radar and radio communication systems, impedance matching in power amplifiers, anti-aliasing in data converters and in many other areas.**

## Abstract

## 1. Introduction

## 2. Voltage Differencing Extra X Current Conveyor (VD-EXCCII)

_{Bias}and V

_{Bias}for the circuit.

## 3. Proposed Electronically Tunable Mixed-Mode Universal Filter

#### 3.1. Operation in VM and TAM

#### 3.2. Operation in CM and TIM

## 4. Non-Ideality and Sensitivity Analysis

#### 4.1. Non-Ideal Gain and Sensitivity Analysis

_{0}and Q of the proposed filters. The modified expressions of the filter transfer functions, ${f}_{0}^{\prime}$ and ${Q}^{\prime}$ for the MISO/ SIMO configurations are presented in Equations (26)–(31):

#### 4.2. Non-Ideal Parasitic Analysis

## 5. Simulation and Validation

_{p-p}and a frequency of 8.0844 MHz was applied at the input, and the output was analyzed as presented in Figure 11. It can be inferred from the figure that the phase relation between the input and LP, BP and HP outputs of the filter are correct.

_{2}, as shown in Figure 12. It can be deduced from Figure 12b that the quality factor of the filter can be tuned linearly. The fitting equation using a linear regression with coefficient of determination R

^{2}= 0.9832, which indicates the fraction of the fitting values that are closest to the line of reference data, is given in Figure 12. The pole frequency of the proposed filter can be tuned by varying the bias current of the OTA, as can be inferred from Equation (17). The tuning property is validated by plotting the VM-AP response for the different values of the OTA bias current, as shown in Figure 13. The fitting equation using a power regression with R

^{2}= 0.9962 is given in Figure 13b.

_{m1}= 1.0321 mS. The five filter responses in CM mode are presented in Figure 19.

^{2}= 0.9986 is given in Figure 22b. Furthermore, the total harmonic distortion for different input current amplitudes is shown in Figure 23. It can be inferred that the THD remains approximately 2.5% for a considerable signal range.

## 6. Filter Realization Using Macro Models of Commercially Available Integrated Circuits AD844 and LM13700

_{C}= 10 V and ${R}_{\mathrm{Bias}}=178.6\text{}\mathrm{k}\mathrm{\Omega}$. The capacitors are selected equal to 1 nF and the resistors values are fixed as ${R}_{1}=1\text{}\mathrm{k}\mathrm{\Omega}{\text{}\mathrm{and}\text{}R}_{2}=500\text{}\mathrm{\Omega}$, resulting in ${f}_{0}=225\text{}\mathrm{kHz}\text{}\mathrm{and}\text{}Q=0.707$. The AC analysis results of the filter are presented in Figure 25. The measured frequency is found to be 220.4 kHz, which translates into 2% error. A time domain analysis is also carried out for the VM-BP configuration. A sinusoidal signal of 40 mV

_{p-p}at the 225 kHz frequency is applied at the input of the filter and the corresponding BP output is analyzed as shown in Figure 26, which establishes the correct functioning of the filter.

## 7. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

${\alpha}_{P/N},{\alpha}_{P/N}^{\prime}$ | Frequency dependent non-ideal current gains |

${\alpha}_{Vt}$ | Threshold voltage temperature coefficient |

${\beta}_{P/N}$ | Frequency dependent non-ideal voltage gains |

${\epsilon}_{{g}_{m}}$, ${\epsilon}_{{g}_{m}}^{\prime}$ | Transconductance errors |

${\epsilon}_{iP}$, ${\epsilon}_{iN}$ | Current tracking errors |

${\epsilon}_{v\left(P,N\right)}$ | Voltage tracking errors |

$\gamma ,{\gamma}^{\prime}$ | Frequency dependent non-ideal transconductance transfer gains |

µ | Carrier mobility |

ABB | Active building blocks |

AP | All pass |

BP | Band pass |

BR | Band reject |

C_{ox} | Gate oxide capacitance per unit area |

CCII | Second-generation current conveyor |

CFOA | Current feedback operational amplifier |

CM | Current-mode |

DDCC | Differential difference current conveyor |

DPCCII | Digitally programmable second-generation current conveyor |

DVCC | Differential voltage current conveyor |

HP | High pass |

ICCII | Inverting second-generation current conveyor |

L | Effective length of the channel |

LP | Low pass |

MISO | Multi input single output |

MOCCCII | Multi output current controlled current conveyor |

MOCCII | Multi output second-generation current conveyor |

OTA | Operational transconductance amplifier |

OTA | Operational transconductance amplifier |

Q | Quality factor |

SIMO | Single input multi output |

TIM | Trans-impedance-mode |

V_{t} | Threshold voltage |

VDBA | Voltage differencing buffered amplifier |

VDCC | Voltage differencing current conveyor |

VD-EXCCII | Voltage Differencing Extra X Current Conveyor |

VDTA | Voltage differencing transconductance amplifier |

VDTA | Voltage differencing transconductance amplifier |

VM | Voltage-mode |

W | Effective channel width |

## References

- Mohan, P.A. Current-Mode VLSI Analog Filters: Design and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Ferri, G.; Guerrini, N.C. Low-Voltage Low-Power CMOS Current Conveyors; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Senani, R.; Bhaskar, D.; Singh, A. Current Conveyors: Variants, Applications and Hardware Implementations; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Mohammad, F.; Sampe, J.; Shireen, S.; Ali, S.H.M. Minimum passive components based lossy and lossless inductor simulators employing a new active block. AEU Int. J. Electron. Commun.
**2017**, 82, 226–240. [Google Scholar] [CrossRef] - Raut, R.; Swamy, M.N. Modern Analog Filter Analysis and Design: A Practical Approach; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Abuelma’Atti, M.T.; Bentrcia, A. A Novel mixed-mode CCII-based filter. Act. Passiv. Electron. Compon.
**2004**, 27, 197–205. [Google Scholar] [CrossRef] [Green Version] - Abuelma’Atti, M.T.; Bentrcia, A.; Al-Shahrani, S.M. A novel mixed-mode current-conveyor-based filter. Int. J. Electron.
**2004**, 91, 191–197. [Google Scholar] [CrossRef] - Abuelma’Atti, M.T. A Novel mixed-mode current-controlled current-conveyor-based filter. Act. Passiv. Electron. Compon.
**2003**, 26, 185–191. [Google Scholar] [CrossRef] [Green Version] - Abuelma’Atti, M.T.; Bentrcia, A. A Novel mixed-mode OTA-C filter. Frequenz
**2003**, 57, 157–159. [Google Scholar] [CrossRef] - Singh, V.K.; Singh, A.K.; Bhaskar, D.R.; Senani, R. Novel mixed-mode universal biquad configuration. IEICE Electron. Express
**2005**, 2, 548–553. [Google Scholar] [CrossRef] [Green Version] - Shah, N.A.; Malik, M.A. Multifunction mixed-mode filter using FTFNs. Analog. Integr. Circuits Signal Process.
**2006**, 47, 339–343. [Google Scholar] [CrossRef] - Pandey, N.; Paul, S.K.; Bhattacharyya, A.; Jain, S.B. A new mixed mode biquad using reduced number of active and passive elements. IEICE Electron. Express
**2006**, 3, 115–121. [Google Scholar] [CrossRef] [Green Version] - Ibrahim, M.A. Design and analysis of a mixed-mode universal filter using dual-output operational transconductance amplifiers (DO-OTAs). In Proceedings of the 2008 International Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 13–15 May 2008; pp. 915–918. [Google Scholar]
- Lee, C.-N.; Chang, C.-M. Single FDCCII-based mixed-mode biquad filter with eight outputs. AEU—Int. J. Electron. Commun.
**2009**, 63, 736–742. [Google Scholar] [CrossRef] - Li, Z. Mixed-mode universal filter using MCCCII. AEU—Int. J. Electron. Commun.
**2009**, 63, 1072–1075. [Google Scholar] [CrossRef] - Minaei, S.; Ibrahim, M.A. A mixed-mode KHN-biquad using DVCC and grounded passive elements suitable for direct cascading. Int. J. Circuit Theory Appl.
**2009**, 37, 793–810. [Google Scholar] [CrossRef] - Chen, H.-P.; Liao, Y.-Z.; Lee, W.-T. Tunable mixed-mode OTA-C universal filter. Analog. Integr. Circuits Signal Process.
**2008**, 58, 135–141. [Google Scholar] [CrossRef] - Maheshwari, S.; Singh, S.; Chauhan, D. Electronically tunable low-voltage mixed-mode universal biquad filter. IET Circuits Devices Syst.
**2011**, 5, 149. [Google Scholar] [CrossRef] - Lee, C.-N.; Lee, C.-N. Multiple-mode OTA-C universal biquad filters. Circuits Syst. Signal Process.
**2009**, 29, 263–274. [Google Scholar] [CrossRef] - Pandey, N.; Paul, S.K.; Bhattacharyya, A.; Jain, S. Realization of generalized mixed mode universal filter using CCCIIs. J. Act. Passive Electron. Devices
**2010**, 5, 279–293. [Google Scholar] - Singh, S.; Maheshwari, S.; Chauhan, D. Electronically tunable current/voltage-mode universal biquad filter using CCCCTA. Int. J. Recent Trends in Eng. Technol.
**2010**, 3, 71–76. [Google Scholar] - Liao, W.-B.; Gu, J.-C. SIMO type universal mixed-mode biquadratic filter. Indian J. Eng. Mater. Sci.
**2011**, 18, 443–448. [Google Scholar] - Kumngern, M.; Junnapiya, S. Mixed-mode universal filter using OTAs. In Proceedings of the 2012 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Bangkok, Thailand, 27–31 May 2012; pp. 119–122. [Google Scholar]
- Pandey, N.; Paul, S.K. Mixed mode universal filter. J. Circuits Syst. Comput.
**2013**, 22, 1250064. [Google Scholar] [CrossRef] - Kacar, F.; Kuntman, A.; Kuntman, H. Mixed-mode biquad filter employing single active element. In Proceedings of the 2013 IEEE 4th Latin American Symposium on Circuits and Systems (LASCAS), Cusco, Peru, 27 February–1 March 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Yeşil, A.; Kaçar, F. Electronically tunable resistorless mixed mode biquad filters. Radioengineering
**2013**, 22, 1016–1025. [Google Scholar] - Yuce, E. Fully integrable mixed-mode universal biquad with specific application of the CFOA. AEU—Int. J. Electron. Commun.
**2010**, 64, 304–309. [Google Scholar] [CrossRef] - Wang, L.; Wang, C.; Zhang, J.; Liang, X.; Jiang, S. A new mixed-mode filter based on MDDCCs. In Proceedings of the Seventh International Conference on Graphic and Image Processing (ICGIP 2015), Singapore, 23–25 October 2015; Volume 981717. [Google Scholar]
- Lee, C.-N. Independently tunable mixed-mode universal biquad filter with versatile input/output functions. AEU Int. J. Electron. Commun.
**2016**, 70, 1006–1019. [Google Scholar] [CrossRef] - Lee, C.-N. Mixed-Mode Universal Biquadratic Filter with No Need of Matching Conditions. J. Circuits Syst. Comput.
**2016**, 25, 1650106. [Google Scholar] [CrossRef] - Chen, H.-P.; Yang, W.-S. Electronically Tunable Current Controlled Current Conveyor Transconductance Amplifier-Based Mixed-Mode Biquadratic Filter with Resistorless and Grounded Capacitors. Appl. Sci.
**2017**, 7, 244. [Google Scholar] [CrossRef] [Green Version] - Chamnanphai, V. Electronically Tunable SIMO Mixed-mode universal filter using VDTAs. Przegląd Elektrotechniczny
**2017**, 1, 209–213. [Google Scholar] [CrossRef] [Green Version] - Parvizi, M.; Taghizadeh, A.; Mahmoodian, H.; Kozehkanani, Z.D. A Low-Power Mixed-Mode SIMO Universal G m–C Filter. J. Circuits Syst. Comput.
**2017**, 26, 1750164. [Google Scholar] [CrossRef] - Horng, J.-W.; Wu, C.-M.; Herencsar, N. Current-mode and transimpedance-mode universal biquadratic filter using two current conveyors. Indian J. Eng. Mater. Sci.
**2017**, 24, 461–468. [Google Scholar] - Cini, U.; Aktan, M. Dual-mode OTA based biquadratic filter suitable for current-mode applications. AEU Int. J. Electron. Commun.
**2017**, 80, 43–47. [Google Scholar] [CrossRef] - Chaturvedi, B.; Mohan, J.; Kumar, A. A New Versatile Universal Biquad Configuration for Emerging Signal Processing Applications. J. Circuits Syst. Comput.
**2018**, 27, 1850196. [Google Scholar] [CrossRef] - Tsukutani, T.; Yabuki, N. A DVCC-Based Mixed-Mode Biquadratic Circuit. J. Electr. Eng.
**2018**, 6, 52–56. [Google Scholar] [CrossRef] [Green Version] - Bhaskar, D.R.; Raj, A.; Kumar, P. Mixed-mode universal biquad filter using OTAs. J. Circuits Syst. Comput.
**2019**, 29, 2050162. [Google Scholar] [CrossRef] - Lee, C.-N.; Yang, W.-C. General Mixed-Mode Single-Output DDCC-based Universal Biquad Filter. Int. J. Eng. Res.
**2020**, 9, 744–749. [Google Scholar] [CrossRef] - Singh, S.V.; Tomar, R.S.; Chauhan, D.S. A new electronically tunable universal mixed-mode biquad filter. J. Eng. Res.
**2016**, 4, 1–21. [Google Scholar] [CrossRef] - Ettaghzouti, T.; Hassen, N.; Besbes, K. A Novel multi-input single-output mixed-mode universal filter employing second generation current conveyor circuit. In Sensors, Circuits & Instrumentation Systems: Extended Papers 2017; De Gruyter Oldenbourg: Berlin, Germany, 2018; Volume 6, pp. 53–64. [Google Scholar]
- Maheshwari, S. Realization of Simple Electronic Functions Using EXCCII. J. Circuits Syst. Comput.
**2017**, 26, 1750171. [Google Scholar] [CrossRef] - Baker, R.J. CMOS: Circuit Design, Layout, and Simulation; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Han, I.; Park, S. Voltage-controlled linear resistor by two MOS transistors and its application to active RC filter MOS integration. Proc. IEEE
**1984**, 72, 1655–1657. [Google Scholar] [CrossRef] - Tsividis, Y.; McAndrew, C. Operation and Modeling of the MOS Transistor; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Filanovsky, I.; Allam, A. Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Trans. Circuits Syst. I Fundam. Theory Appl.
**2001**, 48, 876–884. [Google Scholar] [CrossRef] - Agrawal, D.; Maheshwari, S. High-Performance Electronically Tunable Analog Filter Using a Single EX-CCCII. Circuits Syst. Signal. Process.
**2020**, 1–25. [Google Scholar] [CrossRef] - Koksal, M.; Oner, S.E.; Sagbas, M. A new second-order multi-mode multi-funtion filter using a single CDBA. In Proceedings of the 2009 European Conference on Circuit Theory and Design, Antalya, Turkey, 23–27 August 2009; pp. 699–702. [Google Scholar]

**Figure 7.**VM MISO configuration: (

**a**) frequency responses of the LP, BP, HP and BR filter and (

**b**) gain and phase responses of the AP filter.

**Figure 8.**TAM MISO configuration: (

**a**) frequency responses of the LP, BP, HP and BR filter and (

**b**) gain and phase responses of the AP filter.

**Figure 9.**CM MISO configuration: (

**a**) frequency responses of the LP, BP, HP, and BR filter and (

**b**) gain and phase responses of the AP filter.

**Figure 10.**TIM MISO configuration: (

**a**) frequency responses of the LP, BP, HP and BR filter and (

**b**) gain and phase responses of the AP filter.

**Figure 11.**VM MISO configuration: transient analysis results for LP, BP and HP filter configurations.

**Figure 12.**CM MISO configuration: (

**a**) frequency responses and (

**b**) quality factor tuning for different resistor values in BP filter.

**Figure 13.**VM MISO configuration: (

**a**) phase responses and (

**b**) pole frequency tuning for different OTA bias current values for AP response.

**Figure 14.**VM MISO configuration: (

**a**) the Monte Carlo analysis results for BP response and (

**b**) the corresponding histogram.

**Figure 15.**CM MISO configuration: (

**a**) the Monte Carlo analysis results and (

**b**) the corresponding histogram.

**Figure 18.**CM MISO configuration: variation of filter pole frequency with temperature and percentage of deviation from the designed frequency for AP response.

**Figure 19.**CM SIMO configuration: (

**a**) frequency responses of the LP, BP, HP and BR filter and (

**b**) gain and phase responses of the AP filter.

**Figure 20.**CM SIMO configuration: transient analysis results for LP, HP and BP filter configurations.

**Figure 22.**CM SIMO configuration: (

**a**) frequency responses and (

**b**) quality factor tuning for different resistor values in BP filter.

**Figure 24.**Scheme for the implementation of the VM filter depicted in Figure 3 using commercially available ICs.

**Figure 25.**VM responses of the filter: (

**a**) frequency responses of the LP, BP, HP and BR filter and (

**b**) gain and phase responses of the AP filter.

References | Number of ABBs | Filter Responses Realized | Passive Components | Inbuilt Tunability | Control of Q Independent of Frequency | Grounded Passive Components | ||||
---|---|---|---|---|---|---|---|---|---|---|

VM | CM | TAM | TIM | R | C | |||||

[6]/2004 | 5-CCII | All Five | All Five | - | - | 7 | 2 | No | No | No |

[7]/2004 | 7-CCII | All Five | All Five | All Five | All Five | 8 | 2 | No | No | No |

[8]/2003 | 4-CCCII | HP, BP, LP, BR | HP, BP, LP, BR | HP, BP, LP, BR | HP, BP, LP, BR | 0 | 2 | Yes | Yes | Yes |

[9]/2003 | 6-OTA | All Five | All Five | - | - | 0 | 2 | Yes | No | Yes |

[10]/2005 | 4-CFOA | All Five | All Five | All Five | All Five | 9 | 2 | No | No | No |

[11]/2006 | 2-FTFN | HP, BP, LP | HP, BP, LP | HP, BP | BP, LP | 3 | 2 | No | No | No |

[12]/2006 | 3-CCII | All Five | All Five | All Five | All Five | 4 | 3 | No | No | No |

[13]/2008 | 4-OTA | HP, BP, LP | All Five | All Five | HP, BP, LP | 0 | 2 | Yes | No | Yes |

[14]/2009 | 1-FDCCII | All Five | All Five | BP, HP | All Five | 3 | 2 | No | Yes | No |

[15]/2009 | 5-MOCCCII | HP, BP, LP | HP, BP, LP | HP, BP, LP | HP, BP, LP | 0 | 2 | Yes | Yes | Yes |

[16]/2009 | 3-DVCC | LP, BP, BR | All Five | All Five | BP, LP | 3 | 2 | No | Yes | Yes |

[17]/2009 | 5-OTA | All Five | All Five | All Five | All Five | 0 | 2 | Yes | Yes | Yes |

[18]/2011 | 3-CCCCTA | HP, LP, BP | All Five | All Five | HP, LP, BP | 0 | 2 | Yes | No | Yes |

[19]/2010 | 5-OTA | All Five | All Five | All Five | All Five | 0 | 2 | Yes | No | Yes |

[20]/2010 | 2-MOCCCII | All Five | All Five | All Five | All Five | 2 | 2 | Yes | Yes | No |

[21]/2010 | 2-CCCCTA | LP, BP | All Five | All Five | LP, BP | 0 | 2 | Yes | No | No |

[22]/2011 | 3-DDCC | All Five | All Five | All Five | All Five | 4 | 2 | No | Yes | No |

[23]/2012 | 6-OTA | All Five | All Five | HP, BP | All Five | 0 | 2 | Yes | Yes | Yes |

[24]/2013 | 4-MOCCCII | All Five | All Five | All Five | All Five | 0 | 2 | Yes | No | Yes |

[25]/2013 | 1-FDCCII | All Five | HP, BP, LP | HP, BP | LP, BP | 2 | 2 | No | No | No |

[26]/2013 | 2-VDTA | All Five | - | All Five | - | 0 | 2 | Yes | Yes | Yes |

[27]/2010 | 1-CFOA | All Five | BR, BP, LP | - | - | 3 | 2 | No | No | No |

[28]/2015 | 3-DDCC | HP, BP, LP | HP, BP, LP | - | - | 5 | 3 | No | Yes | No |

[29]/2016 | 1-FDCCII+, 1-DDCC | All Five | All Five | All Five | All Five | 6 | 2 | No | Yes | No |

[30]/2016 | 2-FDCCII | All Five | All Five | All Five | All Five | 5 | 2 | No | No | No |

[31]/2017 | 3-CCCCTA | All Five | All Five | All Five | All Five | 0 | 2 | Yes | Yes | Yes |

[32]/2017 | 3-VDTA | HP, LP, BP | - | All Five | - | 0 | 2 | Yes | No | Yes |

[33]/2017 | 6-OTA | All Five | All Five | All Five | All Five | 0 | 2 | Yes | No | Yes |

[34]/2017 | 1-DVCC+, 1MOCCII | - | All Five | - | All Five | 3 | 2 | No | Yes | No |

[35]/2017 | 4-OTA | - | All Five | All Five | - | 0 | 2 | Yes | Yes | Yes |

[36]/2018 | 2-FDCCII | All Five | All Five | All Five | All Five | 4 | 2 | No | No | No |

[37]/2018 | 5-DVCCII | All Five | All Five | All Five | All Five | 5 | 2 | No | Yes | Yes |

[38]/2019 | 5-OTA | All Five | All Five | All Five | All Five | 0 | 2 | Yes | Yes | Yes |

[39]/2020 | 3-DDCC | All Five | All Five | All Five | All Five | 4 | 2 | No | No | No |

This work | 1-VD-EXCCII | All Five | All Five | All Five | All Five | 3 | 2 | Yes | Yes | No |

**Table 2.**Comparative study of the state-of-the-art MISO mixed mode filter designs with the proposed filter.

References | Mode of Operation | (i) | (ii) | (iii) | (iv) | (v) | (vi) | (vii) | (viii) | (ix) | (x) | (xi) |
---|---|---|---|---|---|---|---|---|---|---|---|---|

[9]/2003 | MISO | 6-OTA | 2C | Yes | Yes | No | No | No | Yes | Yes | Yes | - |

[7]/2004 | MISO | 7-CCII | 2C+8R | No | Yes | No | Yes | No | Yes | Yes | No | - |

[12]/2006 | MISO | 3-CCII | 3C+4R+, 2-switch | No | No | No | Yes | No | Yes | Yes | No | - |

[13]/2008 | MISO | 4-OTA | 2C | Yes | Yes | No | No | No | Yes | Yes | Yes | 2.25 MHz |

[19]/2010 | MISO | 5-OTA | 2C | Yes | Yes | No | Yes | No | Yes | No | Yes | 1.59 MHz |

[20]/2010 | MISO | 2-MOCCCII | 2C+2R | No | Yes | Yes | Yes | No | Yes | Yes | Yes | 1.27 MHz |

[27]/2010 | MISO | 1-CFOA | 2C+3R | No | No | Yes | No | No | Yes | No | No | 12.7MHz |

[24]/2013 | MISO | 4-MOCCCII | 2C | Yes | Yes | No | Yes | Yes | Yes | No | Yes | - |

[25]/2013 | MISO | 1-FDCCII | 2C+2R | No | Yes | No | No | No | Yes | Yes | No | 10 MHz |

[26]/2013 | MISO | 2-VDTA | 2C | Yes | Yes | Yes | No | No | Yes | Yes | Yes | 1 MHz |

[29]/2016 | MISO | 1-FDCCII+, 1-DDCC | 2C+6R | No | Yes | Yes | Yes | No | Yes | No | No | 1.59 MHz |

[40]/2016 | MISO | 1-MCCTA | 2C+2R | No | Yes | Yes | Yes | No | Yes | Yes | Yes | 12.16 MHz |

[37]/2018 | MISO | 5-DVCC | 2C+5R | Yes | Yes | Yes | Yes | No | Yes | Yes | No | 1MHz |

[41]/2018 | MISO | 4-CCII | 2C+4R | Yes | Yes | Yes | No | No | Yes | Yes | No | 31.8 MHz |

[38]/2019 | MISO | 5-OTA | 2C | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | 3.390 MHz |

[39]/2020 | MISO | 3-DDCCII | 2C+4R | No | Yes | No | Yes | No | Yes | Yes | No | 3.978 MHz |

This work | MISO | 1-VD-EXCCII | 2C+3R | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 8.0844 MHz |

Response | Inputs | Passive Matching Condition | ||
---|---|---|---|---|

V_{1} | V_{2} | V_{3} | ||

LP | 1 | 0 | 0 | No |

HP | 0 | 1 | 0 | No |

BP | 0 | 0 | 1 | No |

BR | 1 | 1 | 0 | No |

AP | 1 | 1 | 1 | 1 = g_{m}_{1}R_{2} |

Response | Inputs | Passive Matching Condition | ||
---|---|---|---|---|

I_{1} | I_{2} | I_{3} | ||

LP | 1 | 0 | 0 | No |

HP | 1 | 1 | 0 | R_{1} = R_{2} |

BP | 0 | 0 | 1 | No |

BR | 0 | 1 | 0 | No |

AP | 0 | 1 | 1 | No |

Transistors | Width (µm) | Length (µm) |
---|---|---|

M1–M2, M5–M6 | 1.8 | 0.36 |

M3–M4, M7–M9 | 5.8 | 0.36 |

M10–M14 | 1.8 | 0.72 |

M15–M18 | 3.06 | 0.36 |

M19–M22 | 4 | 0.36 |

M23, M25, M27, M33, M42, M44 | 2.16 | 0.36 |

M24, M26, M28, M32, M34, M30, M38, M36, M41, M43 | 0.72 | 0.72 |

M21, M31, M35, M37 | 1.08 | 0.72 |

Parameters | $\mathbf{Silterra}\text{}\mathbf{Technology}\text{}({\mathit{V}}_{\mathit{D}\mathit{D}}=-{\mathit{V}}_{\mathit{S}\mathit{S}}=1.25\mathit{V})$ |
---|---|

Voltage gain (${\beta}_{P},\text{}{\beta}_{N}$) | 0.96 |

Current gain (${\alpha}_{P},\text{}{\alpha}_{N}$) | 0.9732 |

Current gain (${\alpha}_{P}^{\prime},\text{}{\alpha}_{N}^{\prime}$) | 0.9687 |

Voltage transfer bandwidth (${V}_{XP}/{V}_{W},\text{}{V}_{XN}/{V}_{W}$) | 2.28 GHz |

Current transfer bandwidth (${I}_{ZP+}/{I}_{XP},{I}_{ZN+}/{I}_{XN}$) | 1.344 GHz |

Current transfer bandwidth (${I}_{ZP-}/{I}_{XP},{I}_{ZN-}/{I}_{XN}$) | 1.29 GHz |

DC voltage range (${V}_{XP},\text{}{V}_{XN}$) | ±720 mV |

DC current range (${I}_{ZP+},\text{}{I}_{ZN+}$) | ±240 µA |

DC current range (${I}_{ZP-},\text{}{I}_{ZN-}$) | ±80 µA |

${X}_{P}{\text{}\mathrm{and}\text{}X}_{N}\text{}\mathrm{node}\text{}\mathrm{resistance}$ (${R}_{XP},{R}_{XN}$) | 70 Ω |

${Z}_{P+}{\text{}\mathrm{and}\text{}Z}_{N+}\text{}\mathrm{node}\text{}\mathrm{resistance}$ (${R}_{ZP+},{R}_{ZN+}$) | 102.91 kΩ |

${Z}_{P-}{\text{}\mathrm{and}\text{}Z}_{N-}\text{}\mathrm{node}\text{}\mathrm{resistance}$ (${R}_{ZP-},{R}_{ZN-}$) | 102.71 kΩ |

${W}_{C+}{\text{}\mathrm{and}\text{}W}_{C-}\text{}\mathrm{node}\text{}\mathrm{resistance}$ (${R}_{WC+},{R}_{WC-}$) | 81.5 kΩ |

Static power dissipation | 3.18 mW @ (I_{Bias} = 50 µA) |

Reference | ABBs | Passive Components | Can Work in All Five Modes | Inbuilt Tunability | % THD in CM BP Configuration Till 50 µA | Technology | Frequency of Operation | Power Consumption | Supply Voltage | Need of Negative and Double Input Signals | Independent Tunability of Q Without Affecting ${\mathit{f}}_{\mathit{O}}$ | Passive Components Matching Condition |
---|---|---|---|---|---|---|---|---|---|---|---|---|

[14] | FDCCII | 5 | No | No | NA | 0.25 µm | 3.316 MHz | NA | ±1.25 V | No | Yes | Yes |

[25] | FDCCII | 4 | No | No | NA | 0.18 µm | 10 MHz | NA | ±0.9 V | No | No | No |

[27] | CFOA | 5 | No | No | NA | 0.25 µm | 12.7 MHz | NA | ±1.25 V | Yes | Yes | Yes |

[40] | MCCTA | 2 | Yes | Yes | less than 3 | 0.25 µm | 12.02 MHz | NA | ±1.25 V | No | Yes | Yes |

[47] | EX-CCCII | 3 | No | Yes | less than 2.5 | 0.18 µm | 22.9 MHz | 1.35 mW | ±0.5 V | Yes | Yes | No |

[48] | CDBA | 5 | No | No | NA | AD844 model | 3 MHz | NA | ±5 V | - | No | Yes |

Proposed | VD-EXCCII | 5 | Yes | Yes | less than 1.5 | 0.18 µm | 8.084 MHz | 5.76 mW | ±1.25 V | No | Yes | No |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Faseehuddin, M.; Herencsar, N.; Albrni, M.A.; Sampe, J.
Electronically Tunable Mixed-Mode Universal Filter Employing a Single Active Block and a Minimum Number of Passive Components. *Appl. Sci.* **2021**, *11*, 55.
https://doi.org/10.3390/app11010055

**AMA Style**

Faseehuddin M, Herencsar N, Albrni MA, Sampe J.
Electronically Tunable Mixed-Mode Universal Filter Employing a Single Active Block and a Minimum Number of Passive Components. *Applied Sciences*. 2021; 11(1):55.
https://doi.org/10.3390/app11010055

**Chicago/Turabian Style**

Faseehuddin, Mohammad, Norbert Herencsar, Musa Ali Albrni, and Jahariah Sampe.
2021. "Electronically Tunable Mixed-Mode Universal Filter Employing a Single Active Block and a Minimum Number of Passive Components" *Applied Sciences* 11, no. 1: 55.
https://doi.org/10.3390/app11010055