Experimental Study of the Performance of a Novel Vertical-Axis Wind Turbine
Abstract
:1. Introduction
2. Basic Equations of Fluid Dynamics
3. Experiment
3.1. Experimental Procedures
3.2. Observations
3.3. Precision
3.4. Calculations
4. Results and Discussion
5. Wall Effects of the Wind Tunnel
6. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anderson, B.E. Enclosed Vertical Axis Fluid Rotor. 2014. Available online: www.patents.justia.com (accessed on 29 October 2019).
- Zayas, J. Scope of Wind Energy Generation Technologies. In Energy and Power Generation Handbook; Rao, K.R., Ed.; Chapter 7; ASME Press: New York, NY, USA, 2011; ISBN 978-0-7918-5955-1. [Google Scholar]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained (Theory, Design and Applications), 2nd ed.; Chapters 1–3; Wiley: West Sussex, UK, 2011; ISBN 978-0-470-01500-1. [Google Scholar]
- Taylor, D. Wind Energy: Renewable Energy (Power for a Sustainable Future), 3rd ed.; Boyle, G., Ed.; Chapter 7; Oxford Press: Oxford, UK, 2012; ISBN 978-0-19-954533-9. [Google Scholar]
- D’Ambrosio, M.; Medaglia, M. Vertical Axis Wind Turbines: History, Technology and Applications. Master’s Thesis, Hogskolan i Halmstad, Halmstad, Sweden, 2010. [Google Scholar]
- Wekesa, D.; Wang, C.; Wei, Y.; Kamao, J.; Damao, L.A. Numerical Analysis of Unsteady Inflow Wind for Site Specific Vertical Axis Wind Turbine: A Case Study for Marsabit and Garissa in Kenya. Renew. Energy 2014, 76, 648–662. [Google Scholar] [CrossRef]
- Wekesa, D.; Wang, C.; Wei, Y.; Damao, L. Influence of Operating Conditions on Unsteady Wind performance of Vertical Axis Wind Turbines Operating within a Fluctuating Free Stream: A Numerical Study. J. Eng. Ind. Aerodyn. 2014, 135, 76–89. [Google Scholar] [CrossRef]
- Scheirich, F.; Fletcher, T.M.; Brown, R.E. Simulating the Aerodynamic Performance and Wake Dynamics of a Vertical Axis Wind Turbine. Wind Energy 2010, 14, 159–177. [Google Scholar] [CrossRef] [Green Version]
- Khan, J.; Rhaman, M. Stress Analysis of Various Shaped Blade of Savonius Wind Turbine. In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, QC, Canada, 14–20 November 2014. [Google Scholar]
- Xisto, C.M.; Pascoa, J.C.; Leger, J.A.; Transconi, M. Wind Energy Production Using an Optimized Variable Pitch Vertical Axis Rotor. In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, QC, Canada, 14–20 November 2014. [Google Scholar]
- Mucke, T.; Kleinhans, D.; Peinke, J. Atmospheric Turbulence and its Influence on the Alternating Loads on Wind Turbines. Wind Energy 2010, 14, 301–316. [Google Scholar] [CrossRef]
- McPhee, D.; Beyene, A. The Straight-Bladed Morphing Vertical Axis Wind Turbine. In Proceedings of the ASME 2016 International Power Conference, Charlotte, NC, USA, 26–30 June 2016. [Google Scholar]
- McLaren, K.; Tullis, S.; Ziada, S. Computational Fluid Dynamics of the Aerodynamics of a High Solidity, Small Scale Vertical Axis Wind Turbine. Wind Energy 2011, 15, 349–361. [Google Scholar] [CrossRef]
- Scheurich, F.; Brown, R.E. Modelling the Aerodynamics of Vertical Axis Wind Turbines in Unsteady Wind Conditions. Wind Energy 2012, 16, 91–107. [Google Scholar] [CrossRef] [Green Version]
- Zanon, A.; Giannattasio, P.; Ferreirra, C.J.S. A Votex Panel Model for the Simulation of the Wake Flow Past a Vertical Axis Wind Turbine in Dynamic Stall. Wind Energy 2013, 16, 661–680. [Google Scholar] [CrossRef]
- Jaohindy, P.; Ennamiri, H.; Garde, F.; Bastide, A. Numerical Investigation of Airflow Through a Savonius Rotor. Wind Energy 2014, 17, 853–869. [Google Scholar] [CrossRef] [Green Version]
- Edwards, J.M.; Danao, L.A.; Howell, R.J. PIV Measurements and CFD Simulation of the performance and Flow Physics and a Small-Scale Vertical Axis Wind Turbine. Wind Energy 2015, 18, 201–217. [Google Scholar] [CrossRef]
- Ragni, D.; Ferreira, C.S.; Correali, G. Experimental Investigation of an Optimized Airfoil for Vertical Axis Wind Turbines. Wind Energy 2015, 18, 1629–1643. [Google Scholar] [CrossRef]
- Kundu, P.K.; Cohen, I.M. Fluid Mechanics, 3rd ed.; Chapter 4; Elsevier: California, USA, 2004; ISBN 978-0-12-178253-5. [Google Scholar]
- Aris, R. Vectors, Tensors and the Basic Equations of Fluid Mechanics; Chapters 4–6; Dover Publications, Inc.: Mineola, NY, USA, 1989; ISBN 0-486-66110-5. [Google Scholar]
- Graebel, W.P. Advanced Fluid Mechanics; Chapters 1–3; Elsevier: Burlington, MA, USA, 2007; ISBN 978-0-12-370885-4. [Google Scholar]
- Damljanovic, D.; Vukovic, D.; Ocokoljic, G.; Rasuo, B. A Study of Wall interference effects in Wind Tunnel Testing of a Standard Model at Transonic speeds. In Proceedings of the 30th Congress of the International Council of the Aeronautical Sciences (ICAS 2016), Daejeon, Korea, 25–30 September 2016. [Google Scholar]
- Mokhtar, W.; Hasan, M.R. A CFD Study of Wind Tunnel Wall Interference. In Proceedings of the 2016 ASEE North Central Section Conference, Mount Pleasant, MI, USA, 18–19 March 2016. [Google Scholar]
- Awbi, H.B.; Tan, S.H. Effects of Wind-Tunnel Walls on the Drag of a Sphere. ASME J. Fluids Eng. 1983, 103, 461–465. [Google Scholar] [CrossRef]
U0 (m/s) | Power Output (W) | Torque (Nm) | RPM |
---|---|---|---|
4.22 ± 0.1300 | 0.60 ± 0.0020 | 0.046 ± 0.0001 | 105 ± 0.2620 |
7.65 ± 0.2300 | 1.42 ± 0.0040 | 0.052 ± 0.0001 | 270 ± 0.6750 |
9.39 ± 0.2820 | 8.63 ± 0.220 | 0.161 ± 0.0004 | 578 ± 1.4500 |
9.65 ± 0.2890 | 9.94 ± 0.0250 | 0.172 ± 0.0004 | 626 ± 1.5650 |
10.35 ± 0.3110 | 9.68 ± 0.0240 | 0.170 ± 0.004 | 640 ± 1.6000 |
U0 (m/s) | a | m |
---|---|---|
4.22 ± 0.1300 | 0.573 ± 0.0540 | 1.54 ± 0.0640 |
7.65 ± 0.2300 | 0.749 ± 0.0580 | 1.22 ± 0.0710 |
9.39 ± 0.2820 | 0.620 ± 0.1070 | 1.33 ± 0.1410 |
9.65 ± 0.2890 | 0.612 ± 0.1120 | 1.34 ± 0.1460 |
10.35 ± 0.3110 | 0.654 ± 0.1070 | 1.29 ± 0.1390 |
U0 (m/s) | Power Output (W) | Torque (Nm) | RPM | ω (rad/s) | U1 | U2 | λ | Rotational Power (W) |
---|---|---|---|---|---|---|---|---|
4.22 ± 0.1300 | 0.60 ± 0.0020 | 0.046 ± 0.0001 | 105 ± 0.2620 | 11.00 ± 0.0270 | 1.80 ± 0.0540 | 0.50 ± 0.0100 | 0.23 ± 0.0290 | 0.51 ± 0.0020 |
7.65 ± 0.2300 | 1.42 ± 0.0040 | 0.052 ± 0.0001 | 270 ± 0.6750 | 28.27 ± 0.0730 | 1.92 ± 0.0580 | 0.67 ± 0.0130 | 0.33 ± 0.0660 | 1.47 ± 0.0770 |
9.39 ± 0.2820 | 8.63 ± 0.0220 | 0.161 ± 0.0004 | 578 ± 1.4500 | 60.53 ± 0.1510 | 3.57 ± 0.1070 | 1.64 ± 0.0330 | 0.57 ± 0.1590 | 9.72 ± 0.0490 |
9.65 ± 0.2890 | 9.94 ± 0.0250 | 0.172 ± 0.0004 | 626 ± 1.5650 | 65.55 ± 0.1640 | 3.74 ± 0.1200 | 1.71 ± 0.0340 | 0.60 ± 0.1720 | 11.27 ± 0.0540 |
10.35 ± 0.3110 | 9.68 ± 0.0240 | 0.170 ± 0.0004 | 640 ± 1.6000 | 67.02 ± 0.1680 | 3.58 ± 0.1070 | 1.62 ± 0.0320 | 0.58 ± 0.1790 | 11.39 ± 0.0550 |
U0 (m/s) | λ | Torque (Nm) | Pactual (W) | Paero (W) | Cp,actual | Cp,aero |
---|---|---|---|---|---|---|
4.22 ± 0.1300 | 0.23 ± 0.0540 | 0.046 ± 0.0001 | 0.56 ± 0.0020 | 1.45 ± 0.1244 | 0.162 ± 0.0150 | 0.420 ± 0.0938 |
7.65 ± 0.2300 | 0.33 ± 0.0580 | 0.052 ± 0.0001 | 1.45 ± 0.0055 | 5.12 ± 0.3860 | 0.071 ± 0.0064 | 0.249 ± 0131 |
9.39 ± 0.2820 | 0.57 ± 0.1070 | 0.161 ± 0.0004 | 9.17 ± 0.0355 | 14.02 ± 1.6900 | 0.241 ± 0.0210 | 0.369 ± 0.0200 |
9.65 ± 0.2890 | 0.60 ± 0.1720 | 0.172 ± 0.0004 | 10.60 ± 0.0395 | 15.50 ± 1.9400 | 0.257 ± 0.0231 | 0.375 ± 0.0203 |
10.35 ± 0.3110 | 0.58 ± 0.1790 | 0.170 ± 0.0004 | 10.53 ± 0.0395 | 17.19 ± 2.0527 | 0.207 ± 0.0187 | 0.338 ± 0.0186 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agbormbai, J.; Zhu, W. Experimental Study of the Performance of a Novel Vertical-Axis Wind Turbine. Appl. Sci. 2020, 10, 2902. https://doi.org/10.3390/app10082902
Agbormbai J, Zhu W. Experimental Study of the Performance of a Novel Vertical-Axis Wind Turbine. Applied Sciences. 2020; 10(8):2902. https://doi.org/10.3390/app10082902
Chicago/Turabian StyleAgbormbai, James, and Weidong Zhu. 2020. "Experimental Study of the Performance of a Novel Vertical-Axis Wind Turbine" Applied Sciences 10, no. 8: 2902. https://doi.org/10.3390/app10082902
APA StyleAgbormbai, J., & Zhu, W. (2020). Experimental Study of the Performance of a Novel Vertical-Axis Wind Turbine. Applied Sciences, 10(8), 2902. https://doi.org/10.3390/app10082902