Enhanced Crystal Stabilities of ε-CL-20 via Core-Shell Structured Energetic Composites
Abstract
Featured Application
Abstract
1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Sample Preparations
2.3. Characterization Method
3. Results and Discussion
3.1. Morphology and Characteristics
3.2. Thermal Properties of ε-CL-20 Composite Structures
3.3. Phase Transition Stability of ε-CL-20 Composite Structures
3.4. Mechanical Sensitivity of ε-CL-20 Composite Structures
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nielsen, A.T. Caged Polynitramine Compound. U.S. Patent No. 5,693,794, 2 December 1997. [Google Scholar]
- Nielsen, A.T. Synthesis of Polynitropolyaza Caged Nitramines; Chemical Propulsion Information Agency: Columbia, MD, USA, 1987. [Google Scholar]
- Simpson, R.L.; Urtiew, P.A.; Ornellas, D.L.; Moody, G.L.; Scribner, K.F.J.; Hoffman, D.M. CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propellants Explos. Pyrotech. 1997, 22, 249–255. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, J.J.; Guo, X.Y.; Jiao, Q.J.; Zhang, J.Y. Effect of addictives on polymorphic transition of epsilon-CL-20 in castable systems. J. Anal. Calorim. 2014, 117, 1001–1008. [Google Scholar] [CrossRef]
- Ghosh, M.; Venkatesan, V.; Mandave, S.; Banerjee, S.; Sikder, N.; Sikder, A.K.; Bhattacharya, B. Probing Crystal Growth of epsilon- and alpha-CL-20 Polymorphs via Metastable Phase Transition Using Microscopy and Vibrational Spectroscopy. Cryst. Growth Des. 2014, 14, 5053–5063. [Google Scholar] [CrossRef]
- Guo, C.; Wang, D.; Gao, B.; Wang, J.; Luo, B.; Yang, G.; Nie, F. Solid–solid phase transition study of ε-CL-20/binder composites. RSC Adv. 2016, 6, 859–865. [Google Scholar] [CrossRef]
- Gump, J.C.; Peiris, S.M. Phase transitions and isothermal equations of state of epsilon hexanitrohexaazaisowurtzitane (CL-20). J. Appl. Phys. 2008, 104, 083509. [Google Scholar] [CrossRef]
- Tian, Q.; Yan, G.; Sun, G.; Huang, C.; Xie, L.; Chen, B.; Huang, M.; Li, H.; Liu, Y.; Wang, J. Thermally Induced Damage in Hexanitrohexaazaisowurtzitane. Cent. Eur. J. Energ. Mater. 2013, 10, 359–369. [Google Scholar]
- Gavezzotti, A.; Simonetta, M. Crystal-Chemistry in Organic-Solids. Chem. Rev. 1982, 82, 1–13. [Google Scholar] [CrossRef]
- Jung, J.W.; Kim, K.J. Effect of Supersaturation on the Morphology of Coated Surface in Coating by Solution Crystallization. Ind. Eng. Chem. Res. 2011, 50, 3475–3482. [Google Scholar] [CrossRef]
- Yang, Z.J.; Ding, L.; Wu, P.; Liu, Y.G.; Nie, F.D.; Huang, F.L. Fabrication of RDX, HMX and CL-20 based microcapsules via in situ polymerization of melamine-formaldehyde resins with reduced sensitivity. Chem. Eng. J. 2015, 268, 60–66. [Google Scholar] [CrossRef]
- Ma, Z.G.; Gao, B.; Wu, P.; Shi, J.C.; Qiao, Z.Q.; Yang, Z.J.; Yang, G.C.; Huang, B.; Nie, F.D. Facile, continuous and large-scale production of core-shell HMX@TATB composites with superior mechanical properties by a spray-drying process. RSC Adv. 2015, 5, 21042–21049. [Google Scholar] [CrossRef]
- Levitas, V.I.; Henson, B.F.; Smilowitz, L.B.; Asay, B.W. Solid–solid phase transformation via virtual melting significantly below the melting temperature. Phys. Rev. Lett. 2004, 92, 235702. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Q.; Ballmer, S.G.; Gillis, E.P.; Fujii, S.; Schmidt, M.J.; Palazzolo, A.M.E.; Lehmann, J.W.; Morehouse, G.F.; Burke, M.D. Synthesis of many different types of organic small molecules using one automated process. Science 2015, 347, 1221–1226. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.Y.; Zhang, P.; Xu, J.J.; Wang, Z.H.; Jiao, Q.J. Research on the Mechanism and Kinetics of Polymorphic Transitions of epsilon-CL-20 in Composite Systems. Cent. Eur. J. Energ. Mater. 2015, 12, 689–702. [Google Scholar]
- Liu, Y.; Li, S.C.; Wang, Z.S.; Xu, J.J.; Sun, J.; Huang, H. Thermally Induced Polymorphic Transformation of Hexanitrohexaazaisowurtzitane (HNIW) Investigated by in-situ X-ray Powder Diffraction. Cent. Eur. J. Energ. Mater. 2016, 13, 1023–1037. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Guo, X.-Y.; Jiao, Q.-J.; Zhang, P. Phase transitions of epsilon-HNIW in compound systems. AIP Adv. 2016, 6, 055016. [Google Scholar] [CrossRef]
- Zhu, Q.; Xiao, C.; Li, S.B.; Luo, G. Bioinspired Fabrication of Insensitive HMX Particles with Polydopamine Coating. Propellants Explos. Pyrotech. 2016, 41, 1092–1097. [Google Scholar] [CrossRef]
- Shang, K.; Song, S.Y.; Cheng, Y.P.; Guo, L.L.; Pei, Y.X.; Lv, X.M.; Aastrup, T.; Pei, Z.C. Fabrication of Carbohydrate Chips Based on Polydopamine for Real-Time Determination of Carbohydrate-Lectin Interactions by QCM Biosensor. Polymers 2018, 10, 1275. [Google Scholar] [CrossRef] [PubMed]
- Postma, A.; Yan, Y.; Wang, Y.J.; Zelikin, A.N.; Tjipto, E.; Caruso, F. Self-Polymerization of Dopamine as a Versatile and Robust Technique to Prepare Polymer Capsules. Chem. Mater. 2009, 21, 3042–3044. [Google Scholar] [CrossRef]
- Nie, C.X.; Yang, Y.; Cheng, C.; Ma, L.; Deng, J.; Wang, L.R.; Zhao, C.S. Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications. Acta Biomater. 2017, 51, 479–494. [Google Scholar] [CrossRef]
- Nie, C.X.; Cheng, C.; Peng, Z.H.; Ma, L.; He, C.; Xia, Y.; Zhao, C.S. Mussel-inspired coatings on Ag nanoparticle-conjugated carbon nanotubes: Bactericidal activity and mammal cell toxicity. J. Mater. Chem. B 2016, 4, 2749–2756. [Google Scholar] [CrossRef]
- Jiang, J.H.; Zhu, L.P.; Zhu, L.J.; Zhu, B.K.; Xu, Y.Y. Surface Characteristics of a Self-Polymerized Dopamine Coating Deposited on Hydrophobic Polymer Films. Langmuir 2011, 27, 14180–14187. [Google Scholar] [CrossRef] [PubMed]
- He, G.S.; Yang, Z.J.; Pan, L.P.; Zhang, J.H.; Liu, S.J.; Yan, Q.L. Bioinspired interfacial reinforcement of polymer based energetic composites with a high loading of solid explosive crystals. J. Mater. Chem. A 2017, 5, 13499–13510. [Google Scholar] [CrossRef]
- Gong, F.Y.; Zhang, J.H.; Ding, L.; Yang, Z.J.; Liu, X.B. Mussel-inspired coating of energetic crystals: A compact core-shell structure with highly enhanced thermal stability. Chem. Eng. J. 2017, 309, 140–150. [Google Scholar] [CrossRef]
- Lin, C.M.; Gong, F.Y.; Yang, Z.J.; Pan, L.P.; Liu, S.J.; Li, J.; Guo, S.Y. Bio-inspired fabrication of core@shell structured TATB/polydopamine microparticles via in situ polymerization with tunable mechanical properties. Polym. Test. 2018, 68, 126–134. [Google Scholar] [CrossRef]
- Li, Y.B.; Yang, Z.J.; Zhang, J.H.; Pan, L.P.; Ding, L.; Tian, X.; Zheng, X.; Gong, F.Y. Fabrication and characterization of HMX@TPEE energetic microspheres with reduced sensitivity and superior toughness properties. Compos. Sci. Technol. 2017, 142, 253–263. [Google Scholar] [CrossRef]
- Li, M.; Huang, M.; Kang, B.; Wen, M.P.; Li, H.Z.; Xu, R. Quality evaluation of RDX crystalline particles by confined quasi-static compression method. Propellants Explos. Pyrotech. 2007, 32, 401–405. [Google Scholar]
- Young, R.A. The Rietveld Method; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- National Military Standard of China. Experimental Methods of Sensitivity and Safety; GJB/772A-97; National Defense Science Technology and Industry Comission Press: Beijing, China, 1997. (In Chinese) [Google Scholar]
- Zangmeister, R.A.; Morris, T.A.; Tarlov, M.J. Characterization of Polydopamine Thin Films Deposited at Short Times by Autoxidation of Dopamine. Langmuir 2013, 29, 8619–8628. [Google Scholar] [CrossRef]
- Lin, C.M.; Gong, F.Y.; Yang, Z.J.; Zhao, X.; Li, Y.B.; Zeng, C.C.; Li, J.; Guo, S.Y. Core-Shell Structured HMX@Polydopamine Energetic Microspheres: Synergistically Enhanced Mechanical, Thermal, and Safety Performances. Polymers 2019, 11, 568. [Google Scholar] [CrossRef]
- Gong, F.Y.; Yang, Z.J.; Qjan, W.; Liu, Y.; Zhang, J.H.; Ding, L.; Lin, C.M.; Zeng, C.C.; Yan, Q.L. Kinetics for Inhibited Polymorphic Transition of HMX Crystal after Strong Surface Confinement. J. Phys. Chem. C 2019, 123, 11011–11019. [Google Scholar] [CrossRef]
- Dartyge, B.F. Influence of crystal defects on sensitivity of explosives. In Proceedings of the 10th International Detonation Symposium, Boston, MA, USA, 12–16 June 1993; p. 816. [Google Scholar]











| Sample | ε-CL-20 Content (wt %) | Content (wt %) |
|---|---|---|
| epsilon-CL-20 (ε-CL-20) | 100 | 0 |
| ε-CL-20/polydopamine (PDA) | 98.4 | 1.6 |
| ε-CL-20/poly-L-dopamine (PLD) | 99.3 | 0.7 |
| ε-CL-20/poly-norepinephrine (PNE) | 98.7 | 1.3 |
| ε-CL-20/poly-6-hydroxydopamine (POHDA) | 98.6 | 1.4 |
| Sample | C1s (%) | N1s (%) | O1s (%) | N/C |
|---|---|---|---|---|
| ε-CL-20 | 32.76 | 34.68 | 32.56 | 1.06 |
| PDA | 72.38 | 8.21 | 19.41 | 0.11 |
| PLD | 63.29 | 8.45 | 28.26 | 0.13 |
| PNE | 67.24 | 8.2 | 24.56 | 0.12 |
| POHDA | 67.72 | 8.08 | 24.2 | 0.12 |
| ε-CL-20/PDA | 46.33 | 23.83 | 29.84 | 0.51 |
| ε-CL-20/PLD | 39.8 | 27.78 | 32.42 | 0.70 |
| ε-CL-20/PNE | 41.58 | 26.29 | 32.13 | 0.63 |
| ε-CL-20/POHDA | 44.89 | 24.66 | 30.45 | 0.55 |
| Sample | Endothermic Peak | |||
|---|---|---|---|---|
| To (°C) | Tp (°C) | Te (°C) | ∆H (Jg−1) | |
| ε-CL-20 | 144.5 | 156.3 | 171.4 | −41.3 |
| ε-CL-20/PDA | 172.3 | 179 | 187.1 | −28.1 |
| ε-CL-20/PLD | 157.6 | 165.3 | 174.7 | −35.8 |
| ε-CL-20/PNE | 164.8 | 172.5 | 184.5 | −32.9 |
| ε-CL-20/POHDA | 173.4 | 176 | 185.2 | −30.4 |
| Sample | Impact Sensitivity (H50, cm) | Friction Sensitivity (P, %) |
|---|---|---|
| ε-CL-20 | 13 ± 1 | 96 |
| ε-CL-20/PDA | 12 ± 1 | 48 |
| ε-CL-20/PLD | 13 ± 1 | 60 |
| ε-CL-20/PNE | 14 ± 1 | 60 |
| ε-CL-20/POHDA | 12 ± 1 | 56 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Jiao, Q.; Zhao, W.; Guo, X.; Li, D.; Sun, X. Enhanced Crystal Stabilities of ε-CL-20 via Core-Shell Structured Energetic Composites. Appl. Sci. 2020, 10, 2663. https://doi.org/10.3390/app10082663
Zhang H, Jiao Q, Zhao W, Guo X, Li D, Sun X. Enhanced Crystal Stabilities of ε-CL-20 via Core-Shell Structured Energetic Composites. Applied Sciences. 2020; 10(8):2663. https://doi.org/10.3390/app10082663
Chicago/Turabian StyleZhang, Honglei, Qingjie Jiao, Wanjun Zhao, Xueyong Guo, Dayong Li, and Xiaole Sun. 2020. "Enhanced Crystal Stabilities of ε-CL-20 via Core-Shell Structured Energetic Composites" Applied Sciences 10, no. 8: 2663. https://doi.org/10.3390/app10082663
APA StyleZhang, H., Jiao, Q., Zhao, W., Guo, X., Li, D., & Sun, X. (2020). Enhanced Crystal Stabilities of ε-CL-20 via Core-Shell Structured Energetic Composites. Applied Sciences, 10(8), 2663. https://doi.org/10.3390/app10082663
