Is an ADHD Observation-Scale Based on DSM Criteria Able to Predict Performance in a Virtual Reality Continuous Performance Test?
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Instruments
2.4. Data analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Polanczyk, G.V.; Willcutt, E.G.; Salum, G.A.; Kieling, C.; Rohde, L.A. ADHD prevalence estimates across three decades: An updated systematic review and meta-regression analysis. Int. J. Epidemiol. 2014, 43, 434–442. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2013; ISBN 978-0-89-042555-8. [Google Scholar]
- Barkley, R.A. Attention-Deficit Hyperactivity Disorder: A Handbook for Diagnosis and Treatment, 3rd ed.; Guilford: New York, NY, USA, 2006; ISBN 978-1-59-385210-8. [Google Scholar]
- Rodríguez, C.; Núñez, J.C.; Rodríguez, F.J.; Parrales, A.; Bringas, C.; García, T. Attention Deficit Hyperactivity Disorder (ADHD): Prevalence and Sociodemographic Features in Imprisoned Population. Psicologia, Reflexão Crítica 2015, 28, 698–707. [Google Scholar] [CrossRef]
- Farré, A.; Narbona, J. EDAH: Scale for the Assessment of Attention Deficit Hyperactivity Disorder; TEA Ediciones: Madrid, Spain, 2001. [Google Scholar]
- Reynolds, C.; Kamphaus, R.W. Behavior Assessment System for Children (BASC): Manual; TEA Ediciones: Madrid, Spain, 2004; ISBN 978-0-387-79948-3. [Google Scholar]
- Achenbach, T.M. Child Behavior Checklist for Age 4–18; University of Vermont: Burlington, VT, USA, 1991; ISBN 938-56-50-87. [Google Scholar]
- Conners, C.K. Conners’ Continuous Performance Test User’s Manual; Multi-Health Systems: Toronto, ON, Canada, 1995; ISBN 843-5-08-511818-0. [Google Scholar]
- García, T.; González-Castro, P.; Areces, D.; Cueli, M.; Rodríguez, C. Executive functions in children and adolescents: The types of assessment measures used and implications for their validity in clinical and educational contexts. Papeles del Psicólogo 2014, 35, 215–233. [Google Scholar]
- Robaey, P.; McKenzie, S.; Schachar, R.; Boivin, M.; Bohbot, V.D. Stop and look! Evidence for a bias towards virtual navigation response strategies in children with ADHD symptoms. Behav. Brain Res. 2016, 298, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Servera, J.; Llabrés, J. Children Sustained Attention Task (CSAT); TEA Ediciones: Madrid, Spain, 2004. [Google Scholar]
- Tinius, T.P. The Integrated Visual and Auditory Continuous Performance Test as a neuropsychological measure. Arch. Clin. Neuropsychol. 2003, 18, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, L.M. Developmental normative data on the Test of Variables of Attention (TOVA). J. Child Psychol. Psychiatry 1993, 34, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, F.X.; Sonuga-Barke, E.J.; Milham, M.P.; Tannock, R. Characterizing cognition in ADHD: Beyond executive dysfunction. Trends Cogn. Sci. 2006, 10, 117–123. [Google Scholar] [CrossRef]
- Sagvolden, T.; Johansen, E.B.; Aase, H.; Russell, V.A. A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav. Brain Sci. 2005, 28, 397–418. [Google Scholar] [CrossRef]
- Epstein, J.N.; Erkanli, A.; Conners, C.K.; Klaric, J.; Costello, J.E.; Angold, A. Relations between continuous performance test performance measures and ADHD behaviors. J. Abnorm. Child Psychol. 2003, 31, 543–554. [Google Scholar] [CrossRef]
- Bart, O.; Raz, S.; Dan, O. Reliability and validity of the Online Continuous Performance Test among children. Assessment 2014, 21, 637–643. [Google Scholar] [CrossRef]
- Areces, D.; García, T.; Cueli, M.; Rodríguez, C. Is a Virtual Reality Test Able to Predict Current and Retrospective ADHD Symptoms in Adulthood and Adolescence? Brain Sci. 2019, 9, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Gioia, G.A.; Kenworthy, L.; Isquith, P.K. Executive function in the real world: BRIEF lessons from Mark Ylvisaker. J. Head Trauma Rehabil. 2010, 25, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.; Finn, P.; Moes, E.; Flannery, K.; Rizzo, A.S. Distractibility in attention deficit/hyperactivity disorder (ADHD): The virtual reality classroom. Child Neuropsychol. 2009, 15, 120–135. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.A.; Buckwalter, J.G.; Bowerly, T.; Humhrey, L.A.; Neuman, U.; van Rooyen, A.; Kim, L. The virtual classroom: A virtual reality environment for the assessment and rehabilitation of attention deficits. Rev. Esp. Neuropsicol. 2001, 3, 11–37. [Google Scholar] [CrossRef]
- Areces, D.; Rodríguez, C.; García, T.; Cueli, M.; González-Castro, P. Efficacy of a continuous performance test based on virtual reality in the diagnosis of ADHD and its clinical presentations. J. Atten. Disord. 2018, 22, 1081–1091. [Google Scholar] [CrossRef]
- Díaz-Orueta, U.; Garcia-López, C.; Crespo-Eguílaz, N.; Sánchez- Carpintero, R.; Climent, G.; Narbona, J. AULA virtual reality test as an attention measure: Convergent validity with Conners’ Continuous Performance Test. Child Neuropsychol. 2014, 20, 328–342. [Google Scholar] [CrossRef]
- Gualtieri, C.T.; Johnson, L.G. ADHD: Is objective diagnosis possible? Psychiatry (Edgmont) 2005, 2, 44–53. [Google Scholar] [CrossRef]
- Areces, D.; Cueli, M.; García, T.; González-Castro, P.; Rodríguez, C. Using brain activation (nir-HEG/Q-EEG) and execution measures (CPTs) in a ADHD assessment protocol. J. Vis. Exp. 2018, 134, e56796. [Google Scholar] [CrossRef]
- Rodríguez, C.; Areces, D.; García, T.; Cueli, M.; González-Castro, P. Comparison between two continuous performance tests for identifying ADHD: Traditional vs. virtual reality. Int. J. Clin. Health Psychol. 2018, 18, 254–263. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 3rd ed.; The Gilford Press: New York, NY, USA, 2011; ISBN 978-1-60-623876-9. [Google Scholar]
- Arbuckle, J.L. SPSS, version 24.0; SPSS: Chicago, IL, USA, 2016. [Google Scholar]
- Toplak, M.E.; Pitch, A.; Flora, D.B.; Iwenofu, L.; Ghelani, K.; Jain, U.; Tannock, R. The unity and diversity of inattention and hyperactivity/impulsivity in ADHD: Evidence for a general factor with separable dimensions. J. Abnorm. Child Psychol. 2009, 37, 1137–1150. [Google Scholar] [CrossRef]
- Burke, J.D. Relationship between conduct disorder and oppositional defiant disorder and their continuity with antisocial behaviors: Evidence from longitudinal clinical studies. In Externalizing Disorders of Childhood: Refining the Research Agenda for DSM-V; Shaffer, D., Leibenluft, E., Rohde, L.A., Eds.; American Psychiatric Publishing: Arlington, VA, USA, 2009. [Google Scholar]
- Sonuga-Barke, E.J.; Sergeant, J.A.; Nigg, J.; Willcutt, E. Executive dysfunction and delay aversion in attention deficit hyperactivity disorder: Nosologic and diagnostic implications. Child Adolesc. Psychiatr. Clin. N. Am. 2008, 17, 367–384. [Google Scholar] [CrossRef] [PubMed]
- Sergeant, J.A.; Willcutt, E.; Nigg, J. How Clinically Functional Are Executive Function Measures of ADHD. Externalizing Disorders of Childhood: Refining the Research Agenda for DSM–V; American Psychiatric Association: Arlington, VA, USA, 2008. [Google Scholar]
- Willcutt, E.G.; Pennington, B.F.; DeFries, J.C. Etiology of inattention and hyperactivity/impulsivity in a community sample of twins with learning difficulties. J. Abnorm. Child Psychol. 2000, 28, 149–159. [Google Scholar] [CrossRef] [PubMed]
M | SD | Asymmetry | Kurtosis | |
---|---|---|---|---|
Omissions | 62.11 | 25.29 | −0.377 | −0.924 |
Commissions | 58.03 | 29.05 | −0.229 | −1.149 |
Response Time | 49.47 | 29.10 | 0.126 | −1.169 |
EDAH. I/H | 82.55 | 16.87 | −1.664 | 3.851 |
EDAH.AD | 82.51 | 15.38 | −1.821 | 5.468 |
EDAH.CD | 80.40 | 15.94 | −1.584 | 3.853 |
Independent variables: EDAH Scale | Dependent Variables: VR-CPT Variables | ||
---|---|---|---|
Omissions | Commissions | Response Time | |
EDAH.AD β (t) | 0.411 (2.765 **) | 0.615 (3.162 **) | 0.782 (3.558 **) |
EDAH. H β (t) | 0.240 (1.254) | −0.049 (−0.208) | −0.451 (0.652) |
EDAH.CD β (t) | 0.256 (1.256) | 0.334 (1.342) | 0.334 (1.342) |
R2 | 0.865 *** | 0.804 *** | 0.745 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Areces, D.; Rodríguez, C.; García, T.; Cueli, M. Is an ADHD Observation-Scale Based on DSM Criteria Able to Predict Performance in a Virtual Reality Continuous Performance Test? Appl. Sci. 2020, 10, 2409. https://doi.org/10.3390/app10072409
Areces D, Rodríguez C, García T, Cueli M. Is an ADHD Observation-Scale Based on DSM Criteria Able to Predict Performance in a Virtual Reality Continuous Performance Test? Applied Sciences. 2020; 10(7):2409. https://doi.org/10.3390/app10072409
Chicago/Turabian StyleAreces, Débora, Celestino Rodríguez, Trinidad García, and Marisol Cueli. 2020. "Is an ADHD Observation-Scale Based on DSM Criteria Able to Predict Performance in a Virtual Reality Continuous Performance Test?" Applied Sciences 10, no. 7: 2409. https://doi.org/10.3390/app10072409
APA StyleAreces, D., Rodríguez, C., García, T., & Cueli, M. (2020). Is an ADHD Observation-Scale Based on DSM Criteria Able to Predict Performance in a Virtual Reality Continuous Performance Test? Applied Sciences, 10(7), 2409. https://doi.org/10.3390/app10072409