A Triple-Band Hybridization Coherent Perfect Absorber Based on Graphene Metamaterial
Abstract
Featured Application
Abstract
1. Introduction
2. Structure and Method
3. Results and Discussion
3.1. The result of the Structure Tuning
3.2. Theory Testify
3.3. The Discussion of Polarization-Angle-Insensitive and Angle-Insensitive
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chakyar, S.P.; Simon, S.K.; Bindu, C.; Andrews, J.; Joseph, V.P. Complex permittivity measurement using metamaterial split ring resonators. J. Appl. Phys. 2017, 121, 054101. [Google Scholar] [CrossRef]
- Gui, Y.; Yang, B.; Zhao, X.Q.; Liu, J.Q.; Chen, X.; Wang, X.L.; Yang, C.S. Angular and polarization study of flexible metamaterials with double split-ring resonators on parylene-c substrates. Appl. Phys. Lett. 2016, 109, 161905. [Google Scholar] [CrossRef]
- Ding, F.; Zhong, S.; Bozhevolnyi, S.I. Vanadium Dioxide Integrated Metasurfaces with Switchable Functionalities at Terahertz Frequencies. Adv. Opt. Mater. 2018, 6, 1701204. [Google Scholar] [CrossRef]
- Oleg, R.; Raza, M.; Nawaz, T.; Abbas, T. Evaluation of layer properties of effective parameters of metallic rod metamaterials in GHz frequencies. AEU Int. J. Electron. Commun. 2009, 63, 648–652. [Google Scholar]
- Guo, Y.; Yan, L.; Pan, W.; Luo, B.; Wen, K.; Guo, Z.; Luo, X. Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators. Opt. Express 2012, 20, 24348–24355. [Google Scholar] [CrossRef] [PubMed]
- Zanotto, S.; Lange, C.; Maag, T.; Pitanti, A.; Miseikis, V.; Coletti, C.; Degl’Innocenti, R.; Baldacci, L.; Huber, R.; Tredicucci, A. Magneto-optic transmittance modulation observed in a hybrid graphene-split ring resonator terahertz metasurface. Appl. Phys. Lett. 2015, 107, 121104. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Pendry, J.B.; Schurig, D.; Smith, D.R. Controlling electromagnetic fields. Science 2006, 312, 1780–1782. [Google Scholar] [CrossRef]
- Leonhardt, U. Optical Conformal Mapping. Science 2006, 312, 1777–1780. [Google Scholar] [CrossRef]
- Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342–2348. [Google Scholar] [CrossRef]
- Fan, S.; Suh, W.; Joannopoulos, J.D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 2003, 20, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Thongrattanasiri, S.; Schlather, A.; Liu, Z.; Ma, L.; Wang, Y.; Ajayan, P.; Nordlander, P.; Halas, N.; Abajo, F. Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene. ACS Nano 2013, 7, 2388–2395. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Huang, Q.; Cai, H.; Lin, X.; He, H.; Ma, T.; Lu, Y. A dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures. Opt. Express 2019, 27, 5217. [Google Scholar] [CrossRef]
- Gunho, J.; Minhyeok, C.; Chuyoung, C.; Jinho, K.; Woojin, P.; Sangchul, L.; Woongki, H.; Taewook, K.; SeongJu, P.; ByungHee, H.; et al. Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology 2010, 21, 175201. [Google Scholar]
- Fardoost, A.; Vanani, F.G.; Amirhosseini, A.A.; Safian, R. Design of Multi-Layer Graphene Based Ultra Wideband Terahertz Absorber. IEEE Trans. Nanotechnol. 2016, 16, 68–74. [Google Scholar]
- Xin, Y.; Lanju, L.; Zhang, Z.; Xin, D.; Yao, J.Q. Tunable dual-band absorber based on hybrid graphene metamaterial in terahertz frequencies. In Proceedings of the Aopc: Optoelectronics and Micro/Nano-Optics AOPC 2017: Optoelectronics and Micro/Nano-Optics, Beijing, China, 24 October 2017. [Google Scholar]
- Zhou, Q.; Liu, P.; Bian, L.; Cai, X.; Liu, H. Multi-band terahertz absorber exploiting graphene metamaterial. Opt. Mater. Express 2018, 8, 2928. [Google Scholar] [CrossRef]
- Wang, F.; Huang, S.; Li, L.; Chen, W.; Xie, Z. Dual-band tunable perfect metamaterial absorber based on graphene. Appl. Opt. 2018, 57, 6916. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Schlather, A.E.; Liu, Z.; Ajayan, P.M.; García de Abajo, F.J.; Nordlander, P.; Zhu, X.; Halas, N.J. Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays. Nano Lett. 2014, 14, 299–304. [Google Scholar] [CrossRef]
- Alireza, S.; Sayan, C.; Abraham, V.G.; Jean, C.; Daniel, F.; Laurene, T.; Lei, Z.; Michael, N.L.; Debashis, C. Dynamically tunable extraordinary light absorption in monolayer graphene. Phys. Rev. B 2017, 96, 165431. [Google Scholar]
- Nanli, M.; Shulin, S.; Hongxing, D.; Shaohua, D.; Qiong, H.; Lei, Z.; Long, Z. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. Opt. Express 2018, 26, 1172. [Google Scholar]
- Parish, C.M.; Unocic, K.A.; Tan, L.; Zinkle, S.J.; Kondo, S.; Snead, L.L.; Hoelzer, D.T.; Katoh, Y. Helium sequestration at nanoparticle-matrix interfaces in helium þ heavy ion irradiated nanostructured ferritic alloys. J. Nucl. Mater. 2017, 483, 21–34. [Google Scholar] [CrossRef]
- Chen, D.; Yang, J.; Huang, J.; Bai, W.; Zhang, J.; Xu, S.; Xie, W. The novel graphene metasurfaces based on split-ring resonators for tunable polarization swtiching and beam steering at terahertz frequencies. Carbon 2019, 154, 350–356. [Google Scholar] [CrossRef]
- Alireza, S.; Sayan, C.; Michael, N.L.; Debashis, C. Wide Angle Dynamically Tunable Enhanced Infrared Absorption on Large Area Nanopatterned Graphene. ACS Nano 2018, 13, 421–428. [Google Scholar]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Yan, H.; Low, T.; Guinea, F.; Xia, F.; Avouris, P. Tunable phonon-induced transparency in bilayer graphene nanoribbons. Nano Lett. 2014, 14, 4581–4586. [Google Scholar] [CrossRef]
- Gusynin, V.P.; Sharapov, S.G.; Carbotte, J.P. Magneto-optical conductivity in graphene. J. Phys. Condens. Mat. 2006, 19, 026222. [Google Scholar] [CrossRef]
- Hwang, E.H.; Sarma, S.D. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 2007, 75, 205418. [Google Scholar] [CrossRef]
- Falkovsky, L.A.; Pershoguba, S.S. Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 2007, 76, 153410. [Google Scholar] [CrossRef]
- Hanson, G.W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 2008, 103, 064302. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, T.; Liu, Y.; Xu, C.; Han, X.; Yan, X. Tunable light trapping and absorption enhancement with graphene ring arrays. Phys. Chem. Chem. Phys. 2016, 18, 26661–26669. [Google Scholar] [CrossRef]
- Ke, S.; Wang, B.; Huang, H.; Long, H.; Wang, K.; Lu, P. Plasmonic absorption enhancement in periodic crossshaped graphene arrays. Opt. Express 2015, 23, 8888–8900. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.; Ling, F.; Yue, J.; Luo, C.; Luo, Q.; Yao, J. Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency. IEEE Photonics J. 2016, 8, 7800808. [Google Scholar] [CrossRef]
- Xia, S.X.; Zhai, X.; Wang, L.L.; Lin, Q.; Wen, S.C. Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons: Erratum. Opt. Express 2016, 24, 7436. [Google Scholar] [CrossRef] [PubMed]
- Xuan, X.S.; Zhai, X.; Wang, L.; Lin, Q.; Wen, S. Localized plasmonic field enhancement in shaped graphene nanoribbons. Opt. Express 2016, 24, 16336. [Google Scholar]
- Weilu, G.; Shu, J.; Ciyuan, Q.; Qianfan, X. Excitation of Plasmonic Waves in Graphene by Guided-Mode Resonances. ACS Nano 2012, 6, 7806–7813. [Google Scholar]
- Johan, C.; Alejandro, M.; Sukosin, T.; Frank, H.L.K.; F Javier, G.A. Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons. ACS Nano 2012, 6, 431–440. [Google Scholar]
- Luo, L.; Wang, K.; Ge, C.; Guo, K. Actively controllable terahertz switches with graphene-based nongroove gratings. Photon. Res. 2017, 5, 604–611. [Google Scholar] [CrossRef]
- Yang, J.; Xin, H.; Han, Y.; Chen, D.; Zhang, J.; Huang, J.; Zhang, Z. Ultra-compact beam splitter and filter based on a graphene plasmon waveguide. Appl. Opt. 2017, 56, 9814. [Google Scholar] [CrossRef]
- Bruna, M.; Borini, S. Optical constants of graphene layers in the visible range. Appl. Phys. Lett. 2009, 94, 031901. [Google Scholar] [CrossRef]
- Vakil, A.; Engheta, N. Transformation optics using graphene. Science 2011, 332, 1291–1294. [Google Scholar] [CrossRef]
- Gómez-Díaz, J.S.; Perruisseau-Carrier, J. Graphene-based plasmonic switches at near infrared frequencies. Opt. Express 2013, 21, 15490–15504. [Google Scholar] [CrossRef] [PubMed]
- Jablan, M.; Buljan, H.; Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 2009, 80, 245435. [Google Scholar] [CrossRef]
- Li, W.; Liang, L.; Zhao, S.; Zhang, S.; Xue, J. Fabrication of nanopores in a graphene sheet with heavy ions: A molecular dynamics study. J. Appl. Phys. 2013, 114, 234304. [Google Scholar] [CrossRef]
- Ackland, G. Controlling radiation damage. Science 2010, 327, 1587–1588. [Google Scholar] [CrossRef]
- Lei, M.; Feng, N.; Wang, Q.; Hao, Y.; Huang, S.; Bi, K. Magnetically tunable metamaterial perfect absorber. J. Appl. Phys. 2016, 119, 244504. [Google Scholar] [CrossRef]
- Landy, N.I.; Bingham, C.M.; Tyler, T.; Jokerst, N.; Smith, D.R.; Padilla, W.J. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 2009, 79, 125104. [Google Scholar] [CrossRef]
- Alaee, R.; Farhat, M.; Rockstuhl, C.; Lederer, F. A perfect absorber made of a graphene micro-ribbon metamaterial. Opt. Express 2012, 20, 28017–28024. [Google Scholar] [CrossRef]
- Thongrattanasiri, S.; Koppens, F.H.L.; de Abajo, F.J.G. Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 2012, 108, 047401. [Google Scholar] [CrossRef]
- Prodan, E. A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science 2003, 302, 419–422. [Google Scholar] [CrossRef]
- Surbhi, L.; Link, S.; Halas, N.J. Nano-optics from sensing to waveguiding. Nat. Photonics 2007, 1, 641–648. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Zhang, Z.; Wen, K.; Li, G.; He, J.; Yang, J. A Triple-Band Hybridization Coherent Perfect Absorber Based on Graphene Metamaterial. Appl. Sci. 2020, 10, 1750. https://doi.org/10.3390/app10051750
Jiang X, Zhang Z, Wen K, Li G, He J, Yang J. A Triple-Band Hybridization Coherent Perfect Absorber Based on Graphene Metamaterial. Applied Sciences. 2020; 10(5):1750. https://doi.org/10.3390/app10051750
Chicago/Turabian StyleJiang, Xinpeng, Zhaojian Zhang, Kui Wen, Guofeng Li, Jie He, and Junbo Yang. 2020. "A Triple-Band Hybridization Coherent Perfect Absorber Based on Graphene Metamaterial" Applied Sciences 10, no. 5: 1750. https://doi.org/10.3390/app10051750
APA StyleJiang, X., Zhang, Z., Wen, K., Li, G., He, J., & Yang, J. (2020). A Triple-Band Hybridization Coherent Perfect Absorber Based on Graphene Metamaterial. Applied Sciences, 10(5), 1750. https://doi.org/10.3390/app10051750