Electricity Market Challenges of Photovoltaic and Energy Storage Technologies in the European Union: Regulatory Challenges and Responses
Abstract
:1. Introduction
1.1. Photovoltaic Trends in the World and in the European Union
- Rapid technological development,
- Falling investment costs, and
- The introduction of state subsidies [9].
1.2. The Importance of Energy Storage Systems
1.3. Grid Integration Challenges of Variable Renewable Energy Sources and Storage Systems
1.4. Energy Storage Systems for the Energy Management of Variable Renewable Energy Sources in the Distributed Generation Systems
1.5. Policy Proposals and Trends in the Energy Storage Market in the European Union
- A fully integrated European energy market,
- Energy efficiency contributing to the moderation of demand,
- The decarbonization of the economy,
- Trust, energy security, and solidarity, and
- Competitiveness, research and innovation [72].
1.6. The Main Business Levels of Energy Storage
- Energy Arbitrage: In this case, the wholesale electricity needs to be purchased when the locational marginal energy price is low (for example at night) and the electricity is sold back to the wholesale market when locational marginal prices are high [76].
- Frequency Regulation: This is the automatic and immediate response of power to a change in local grid frequency. The regulation is important to ensure that system-wide generation is perfectly matched with system-level load on a moment-to-moment basis to avoid system-level frequency dips or spikes, which can create grid instability [76].
- Spin/Non-Spin Reserves: In the case of an unplanned generation outage, the spinning reserve generation capacity is able to serve the load immediately. The non-spinning reserve (not instantaneously available) is a generation capacity that can respond to contingency events within a short period (<1 min) [76].
- Voltage Support: This regulation ensures continuous and reliable electricity flow across the grid. Voltage on the transmission and distribution system need to be maintained within an acceptable range to ensure that real and reactive power production are matched with the demand [76].
- Black Start: In the case of a grid outage, black start generation assets are needed to restore operation to larger power plants in order to bring the regional grid back online [76].
- Resource Adequacy: In this case, instead of investing in new gas combustion turbines to meet generation requirements during peak electricity consumption hours, utilities and grid operators can pay for other solutions (including energy storage) to incrementally reduce or defer the need for new generation capacity and minimize the risk of overinvestment in that area [76].
- Distribution Deferral and Transmission Deferral: Reducing, delaying, or entirely avoiding utility investments in distribution system upgrades is necessary to meet the projected load growth on specific regions of the grid [76].
- Transmission Congestion Relief: In this case, the ISOs charge utilities to use congested transmission corridors during certain times of the day. The energy storage devices can be deployed downstream of congested transmission corridors to charge/discharge the energy during congested periods and minimize congestion in the transmission system [76].
- Time-of-Use Bill Management: During peak electricity consumption periods when time-of-use rates are the highest, by shifting these purchases to periods of lower rates, behind-the-meter customers can use energy storage systems to reduce their bill [76].
- Increased PV Self-Consumption: This means minimizing the export of electricity generated by behind-the-meter PV systems to maximize the financial benefit of PV systems in areas with utility rate structures that are unfavorable to distributed PV [76].
- Demand Charge Reduction and Backup Power: In the case of grid failure, battery energy storage systems with local generators can provide backup power at multiple scales (industrial operations, daily backup for residential customers) [76].
1.7. Electricity Trading
- Europe: Nord Pool, European Energy Exchange (EEX),
- Asia: India Energy Exchanges (IEX),
- USA: Pennsylvania New Jersey Maryland Interconnection LLC (PJM), New York Independent System Operator (NYISO) [78].
2. Methods and Details of the Technical Assessment
2.1. Technology-Specific Energy Storage Considerations for Balancing PV Systems
2.2. The Aspects of the Analysis
2.2.1. The Circumstances of the Modeling
2.2.2. Data Processing
3. Results
3.1. Features of the Negative and Positive Power-Energy Divergence
3.2. Simulation Results of the Positive and Negative Divergence Reduction Potential of a Given Storage Size
- There is an accelerating decrease up to about 1000 MWh of energy storage capacity.
- There is a slowing decrease between about 1000 and 3000 MWh of energy storage capacity.
- The decrease is very slight over about 3000 MWh energy storage capacity.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CAES | Compressed-air energy storage |
DG | Distributed Generation |
DOE | Global Energy Storage Database |
DSO | Distribution system operators |
EEX | European Energy Exchange |
EG | Elia Group |
Entso-E | European Network of Transmission System Operators for Electricity |
ESS | Energy Storage System |
ESSs | Energy Storage Systems |
EU | European Union |
FiT | Feed-in-Tariff |
IEX | India Energy Exchanges |
IRENA | International Renewable Energy Agency |
ISOs | independent system operators |
LFP | Lithium-Iron-Phosphate |
Li-ion | Lithium-Ion |
LTO | Lithium titanate |
NCA | Nickel cobalt aluminium |
NMC | Nickel manganese cobalt oxide |
NYISO | New York Independent System Operator |
PHS | Pumped hydro storage |
PJM | Pennsylvania New Jersey Maryland Interconnection LLC |
PST | Phase-shifting transformer |
PV | Photovoltaic |
RTO | Regional transmission organizations |
SMES | Superconducting magnetic energy storage |
TES | Thermal energy storage |
TSO | Transmission system operator |
USA | United States of America |
VRE | Variable Renewable Energy |
VREs | Variable Renewable Energy Sources |
VRFB | Vanadium redox flow battery |
References
- Aboumahboub, T.; Schaber, K.; Tzscheutschler, P.; Hamacher, T. Optimization of the utilization of renewable energy sources in the electricity sector. Recent Adv. Energy Environ. 2010. Available online: https://www.semanticscholar.org/paper/Optimization-of-the-utilization-of-renewable-energy-Aboumahboub-Schaber/4030672038fa20e162813699aaa5ff198b226ab6 (accessed on 20 September 2019).
- Olivier, J.G.J.; Van Aardenne, J.A.; Dentener, F.J.; Pagliari, V.; Ganzeveld, L.N.; Peters, J.A.H.W. Recent trends in global greenhouse gas emissions: Regional trends 1970–2000 and spatial distributionof key sources in 2000. Environ. Sci. 2005, 2, 81–99. [Google Scholar] [CrossRef] [Green Version]
- Greenhouse Gas Emissions by Sector in 2003. EU-25, EU-15 and EU-10—European Environment Agency. Available online: https://www.eea.europa.eu/data-and-maps/figures/greenhouse-gas-emissions-by-sector-in-2003-eu-25-eu-15-and-eu-10 (accessed on 15 May 2018).
- Szabó, S.; Enyedi, P.; Horváth, M.; Kovács, Z.; Burai, P.; Csoknyai, T.; Szabó, G. Automated registration of potential locations for solar energy production with Light Detection And Ranging (LiDAR) and small format photogrammetry. J. Clean. Prod. 2016, 112, 3820–3829. [Google Scholar] [CrossRef]
- Hosenuzzaman, M.; Rahim, N.A.; Selvaraj, J.; Hasanuzzaman, M.; Malek, A.B.M.A.; Nahar, A. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sustain. Energy Rev. 2015, 41, 284–297. [Google Scholar] [CrossRef]
- Aman, M.M.; Solangi, K.H.; Hossain, M.S.; Badarudin, A.; Jasmon, G.B.; Mokhlis, H.; Bakar, A.H.A.; Kazi, S. A review of Safety, Health and Environmental (SHE) issues of solar energy system. Renew. Sustain. Energy Rev. 2015, 41, 1190–1204. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A.; Frew, B.A. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proc. Natl. Acad. Sci. USA 2015, 112, 15060–15065. [Google Scholar] [CrossRef] [Green Version]
- Zsiborács, H.; Hegedűsné Baranyai, N.; Csányi, S.; Vincze, A.; Pintér, G. Economic Analysis of Grid-Connected PV System Regulations: A Hungarian Case Study. Electronics 2019, 8, 149. [Google Scholar] [CrossRef] [Green Version]
- Zsiborács, H.; Pályi, B.; Pintér, G.; Popp, J.; Balogh, P.; Gabnai, Z.; Pető, K.; Farkas, I.; Baranyai, N.H.; Bai, A. Technical-economic study of cooled crystalline solar modules. Sol. Energy 2016, 140, 227–235. [Google Scholar] [CrossRef] [Green Version]
- REN21. Renewables 2018 Global Status Report—REN21; REN21: Paris, France, 2018. [Google Scholar]
- SolarPower Europe. Global Market Outlook for Solar Power; SolarPower Europe: Brussels, Belgium, 2019. [Google Scholar]
- Renewable Energy Policy Network for the 21st Century Renewables 2017 Global Status Report; REN21: Paris, France, 2017; pp. 1–302.
- International Renewable Energy Agency IRENA. Solar PV in Africa: Costs and Markets; International Renewable Energy Agency IRENA: Abu Dhabi, UAE, 2016. [Google Scholar]
- China National Energy Board. 2016 Photovoltaic Power Generation Statistics. Available online: http://www.nea.gov.cn/2017-02/04/c_136030860.htm (accessed on 4 February 2018).
- Zsiborács, H.; Bai, A.; Popp, J.; Gabnai, Z.; Pályi, B.; Farkas, I.; Baranyai, N.; Veszelka, M.; Zentkó, L.; Pintér, G. Change of Real and Simulated Energy Production of Certain Photovoltaic Technologies in Relation to Orientation, Tilt Angle and Dual-Axis Sun-Tracking. A Case Study in Hungary. Sustainability 2018, 10, 1394. [Google Scholar] [CrossRef] [Green Version]
- ENTSO-E. Europe Power System 2040: Completing the Map and Assessing the Cost of Non-Grid. Available online: https://tyndp.entsoe.eu/tyndp2018/power-system-2040/ (accessed on 12 April 2019).
- Zsiborács, H.; Baranyai, N.H.; Vincze, A.; Zentkó, L.; Birkner, Z.; Máté, K.; Pintér, G. Intermittent Renewable Energy Sources: The Role of Energy Storage in the European Power System of 2040. Electronics 2019, 8, 729. [Google Scholar] [CrossRef] [Green Version]
- Delucchi, M.A.; Jacobson, M.Z. Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies. Energy Policy 2011, 39, 1170–1190. [Google Scholar] [CrossRef]
- Czisch, G. Szenarien zur Zukünftigen Stromversorgung, Kostenoptimierte Variationen zur Versorgung Europas und Seiner Nachbarn mit Strom aus Erneuerbaren Energien. Ph.D. Thesis, Universitat Kassel, Kassel, Germany, 2005. [Google Scholar]
- ENTSO-E. Maps and Data, TYNDP 2018. Available online: http://tyndp.entsoe.eu/tyndp2018/ (accessed on 22 May 2018).
- Heide, D.; von Bremen, L.; Greiner, M.; Hoffmann, C.; Speckmann, M.; Bofinger, S. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe. Renew. Energy 2010, 35, 2483–2489. [Google Scholar] [CrossRef]
- Heide, D.; Greiner, M.; von Bremen, L.; Hoffmann, C. Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation. Renew. Energy 2011, 36, 2515–2523. [Google Scholar] [CrossRef] [Green Version]
- Hedegaard, K.; Meibom, P. Wind power impacts and electricity storage – A time scale perspective. Renew. Energy 2012, 37, 318–324. [Google Scholar] [CrossRef]
- Czisch, G.; Giebel, G. Realisable Scenarios for a Future Electricity Supply based 100% on Renewable Energies in: Energy Solutions for Sustainable Development: Proceedings; Risø International Energy Conference 2007; [... Took Place 22–24 May 2007]; Risø National Laboratory: Roskilde, Denmark, 2007; ISBN 9788755036031. [Google Scholar]
- Kempton, W.; Pimenta, F.M.; Veron, D.E.; Colle, B.A. Electric power from offshore wind via synoptic-scale interconnection. Proc. Natl. Acad. Sci. USA 2010, 107, 7240–7245. [Google Scholar] [CrossRef] [Green Version]
- Schaber, K.; Steinke, F.; Hamacher, T. Transmission grid extensions for the integration of variable renewable energies in Europe: Who benefits where? Energy Policy 2012, 43, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Schaber, K.; Steinke, F.; Mühlich, P.; Hamacher, T. Parametric study of variable renewable energy integration in Europe: Advantages and costs of transmission grid extensions. Energy Policy 2012, 42, 498–508. [Google Scholar] [CrossRef] [Green Version]
- Widen, J. Correlations Between Large-Scale Solar and Wind Power in a Future Scenario for Sweden. IEEE Trans. Sustain. Energy 2011, 2, 177–184. [Google Scholar] [CrossRef]
- Aboumahboub, T.; Schaber, K.; Tzscheutschler, P.; Hamacher, T. Optimal Configuration of a Renewable-based Electricity Supply Sector. WSEAS Trans. Power Syst. 2010, 5, 2. [Google Scholar]
- Yao, R.; Steemers, K. A method of formulating energy load profile for domestic buildings in the UK. Energy Build. 2005, 37, 663–671. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory (NREL). Exploration of High-Penetration Renewable Electricity Futures; NREL: Golden, CO, USA, 2012; Volume 1. [Google Scholar]
- National Renewable Energy Laboratory (NREL). Renewable Electricity Generation and Storage Technologies; NREL: Golden, CO, USA, 2012. [Google Scholar]
- Bertsch, J.; Growitsch, C.; Lorenczik, S.; Nagl, S. Flexibility in Europe’s power sector—An additional requirement or an automatic complement? Energy Econ. 2016, 53, 118–131. [Google Scholar] [CrossRef] [Green Version]
- Hesse, H.; Schimpe, M.; Kucevic, D.; Jossen, A. Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids. Energies 2017, 10, 2107. [Google Scholar] [CrossRef] [Green Version]
- Schimpe, M.; Piesch, C.; Hesse, H.; Paß, J.; Ritter, S.; Jossen, A. Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System. Energies 2018, 11, 533. [Google Scholar] [CrossRef] [Green Version]
- Aneke, M.; Wang, M. Energy storage technologies and real life applications—A state of the art review. Appl. Energy 2016, 179, 350–377. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Liao, S.; Ai, X.; Yao, W.; Wen, J. Determining the Minimal Power Capacity of Energy Storage to Accommodate Renewable Generation. Energies 2017, 10, 468. [Google Scholar] [CrossRef] [Green Version]
- Zsiborács, H.; Hegedűsné Baranyai, N.; Vincze, A.; Háber, I.; Pintér, G. Economic and Technical Aspects of Flexible Storage Photovoltaic Systems in Europe. Energies 2018, 11, 1445. [Google Scholar] [CrossRef] [Green Version]
- Blanco, H.; Faaij, A. A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage. Renew. Sustain. Energy Rev. 2018, 81, 1049–1086. [Google Scholar] [CrossRef]
- Strbac, G.; Aunedi, M.; Pudjianto, D.; Djapic, P.; Teng, F.; Sturt, A.; Jackravut, D.; Sansom, R.; Yufit, V.; Brandon, N. Strategic Assessment of the Role and Value of Energy Storage Systems in the UK Low Carbon Energy Future; Energy Futures Lab, Imperial College London: London, UK, 2012. [Google Scholar]
- Denholm, P.; Ela, E.; Kirby, B.; Milligan, M. Role of Energy Storage with Renewable Electricity Generation; NREL: Golden, CO, USA, 2010. [Google Scholar]
- International Renewable Energy Agency. Electricity Storage and Renewables: Costs and Markets to 2030; IRENA: Abu Dhabi, UAE, 2017. [Google Scholar]
- Kondziella, H.; Bruckner, T. Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies. Renew. Sustain. Energy Rev. 2016, 53, 10–22. [Google Scholar] [CrossRef]
- Beaudin, M.; Zareipour, H.; Schellenberglabe, A.; Rosehart, W. Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy Sustain. Dev. 2010, 14, 302–314. [Google Scholar] [CrossRef]
- Deane, J.P.; Ó Gallachóir, B.P.; McKeogh, E.J. Techno-economic review of existing and new pumped hydro energy storage plant. Renew. Sustain. Energy Rev. 2010, 14, 1293–1302. [Google Scholar] [CrossRef]
- Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- European Commission. EU Reference Scenario 2016; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- International Hydropower Association. 2017 Key Trends in Hydropower; International Hydropower Association: London, UK, 2017. [Google Scholar]
- Sandia National Laboratories. DOE Global Energy Storage Database, Office of Electricity Delivery & Energy Reliability. Available online: http://www.energystorageexchange.org/projects (accessed on 18 August 2019).
- May, G.J.; Davidson, A.; Monahov, B. Lead batteries for utility energy storage: A review. J. Energy Storage 2018, 15, 145–157. [Google Scholar] [CrossRef]
- Sandia National Laboratories. DOE Global Energy Storage Database. Available online: https://www.energystorageexchange.org/projects/data_visualization (accessed on 2 March 2019).
- CellCube Energy Storage Systems Inc. Investor Presentation, June 2019; CellCube Energy Storage Systems Inc.: Toronto, ON, Canada, 2019. [Google Scholar]
- Wuhu ETC Battery Limited. Li-ion based Energy Storage System Prices. Available online: https://etcbattery.en.alibaba.com/productgrouplist-807801410-1/SYSTEM.html?spm=a2700.icbuShop.41413.16.60cc27caUMgMb5&filter=null (accessed on 20 October 2019).
- WattJoule Corporation. Cost and Performance Metrics. Available online: https://wattjoule.com/core-innovation/ (accessed on 20 October 2019).
- S&P Global Market Intelligence. “Lithium’s not the only Game in Town”: Energy Storage Hopefuls Eye breakthrough. Available online: https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/52794883 (accessed on 20 October 2019).
- Energy Response Solutions, Inc. Energy Storage System Safety: Comparing Vanadium Redox Flow and Lithium-Ion Based Systems; Energy Response Solutions, Inc.: Soquel, CA, USA, 2017. [Google Scholar]
- Algar, V. Understanding Battery Life—Vanadium Redox Flow Batteries. In Proceedings of the Australian Solar Council’s Solar Energy Exhibition & Conference 2017, South Wharf VIC, Australia, 3–4 May 2017; pp. 1–12. [Google Scholar]
- Enerox GmbH. Cellcube, Building Energy Storage Infrastructure; Enerox GmbH: Neudorf, Austria, 2019. [Google Scholar]
- Terna. Rapporto Pubblico Anno 2016 Storage LAB; Terna: Codrongianos, Italy, 2017. [Google Scholar]
- SOLARWATT GmbH. SOLARWATT MyReserve 500. Available online: https://www.solarwatt.de/stromspeicher/myreserve-500 (accessed on 4 February 2018).
- Terna. Rapporto Pubblico Anno 2017 Storage LAB; Terna: Codrongianos, Italy, 2018. [Google Scholar]
- European Commission. Energy Storage—The Role of Electricity; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Rodríguez, R.A.; Becker, S.; Andresen, G.B.; Heide, D.; Greiner, M. Transmission needs across a fully renewable European power system. Renew. Energy 2014, 63, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Cho, A. Energy’s tricky tradeoffs. Science 2010, 329, 786–787. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.Z.; Delucchi, M.A. Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 2011, 39, 1154–1169. [Google Scholar] [CrossRef]
- PV Magazine. Spain Unveils New Provisions for Self-Consumption Regulation. Available online: https://www.pv-magazine.com/2019/02/01/spain-unveils-new-provisions-for-self-consumption-regulation/ (accessed on 15 October 2019).
- Cochran, J.; Bird, L.; Heeter, J.; Arent, D.J. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience; Oak Ridge and Springfield: Springfield, IL, USA, 2012. [Google Scholar]
- Clean Energy Wire CLEW—Journalism for the Energy Transition. Interconnectors &Amp; Blockages—German Grid at Odds with EU Power Market. Available online: https://www.cleanenergywire.org/factsheets/interconnectors-blockages-german-grid-odds-eu-power-market (accessed on 15 October 2019).
- Miklós, F. Működik az Első Hazai Közcélú Energiatároló Egység. Available online: https://www.villanylap.hu/hirek/4904-mukodik-az-elso-hazai-kozcelu-energiatarolo-egyseg (accessed on 20 February 2019).
- Dániel, S. Napelemek: Energiatárolókat Telepít a Közműszolgáltató. Available online: https://www.napi.hu/magyar_vallalatok/napelemek_energiatarolokat_telepit_a_kozmuszolgaltato.674558.html (accessed on 20 February 2019).
- Fathima, A.H.; Palanisamy, K. Energy Storage Systems for Energy Management of Renewables in Distributed Generation Systems. In Energy Management of Distributed Generation Systems; InTech: London, UK, 2016. [Google Scholar]
- Ugarte, S.; Larkin, J.; Ree, B.; Swinkels, V.; Voogt, M.; Friedrichsen, N.; Michaelis, J.; Thielmann, A.; Wietschel, W.; Wietschel, R. Energy Storage: Which Market Designs and Regulatory Incentives are needed? In Directorate General for Internal Policies Policy Department A: Economic and Scientific Policy; European Parilament: Brussels, Belgium, 2015. [Google Scholar]
- EUR-Lex. Regulation (EU) 2019/943 of the European Parliament and of the Council of 5 June 2019 on the Internal Market for Electricity (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/eli/reg/2019/943/oj (accessed on 11 November 2019).
- EUR-Lex. Directive (EU) 2019/944 of the European Parliament and of the Council of 5 June 2019 on Common Rules for the Internal Market for Electricity and Amending Directive 2012/27/EU (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/eli/dir/2019/944/oj (accessed on 11 November 2019).
- Norton Rose Fulbright. Regulatory Progress for Energy Storage in Europe. Available online: https://www.nortonrosefulbright.com/en-la/knowledge/publications/8b5285f4/regulatory-progress-for-energy-storage-in-europe (accessed on 18 March 2019).
- Garrett, F.; James, M.; Jesse, M.; Hervé, T. The Economics of Battery Energy Storage—How Multi-Use, Customer-Sited Batteries Deliver the most Services and Value to Customers and the Grid; NREL: Golden, CO, USA, 2015. [Google Scholar]
- Eller, A.; Gauntlett, D. Energy Storage Trends and Opportunities in Emerging Markets; Energy Sector Management Assistance Program: Washington, DC, USA, 2017; pp. 1–52. [Google Scholar]
- Maciejowska, K.; Nitka, W.; Weron, T. Day-Ahead vs. Intraday—Forecasting the Price Spread to Maximize Economic Benefits. Energies 2019, 12, 631. [Google Scholar] [CrossRef] [Green Version]
- ENTSO-E. Maps and Data, TYNDP 2016 Storage Projects. Available online: http://tyndp.entsoe.eu/maps-data/ (accessed on 27 May 2018).
- Fuchs, G.; Lunz, B.; Leuthold, M.; Sauer, D. Technology Overview on Electricity Storage—Overview on the Potential and on the Deployment Perspectives of Electricity Storage Technologies; Smart Energy for Europe Platform GmbH: Berlin, Germany, 2012. [Google Scholar]
- De Vita, A.; Kielichowska, I.; Mandatowa, P. Technology Pathways in Decarbonisation Scenarios; European Parilament: Brussels, Belgium, 2018. [Google Scholar]
- Elia Group. Grid Data—Generation. Available online: https://www.elia.be/en/grid-data/power-generation (accessed on 18 October 2019).
- Elia Group. Forecast and Actual Solar-PV1 Power Generation; Elia Group: Brussels, Belgium, 2019. [Google Scholar]
- Hungarian Transmission System Operator - MAVIR ZRt. Renewable Support Department Customer Service. Available online: https://www.mavir.hu/web/mavir/ugyfelszolgalat (accessed on 18 October 2019).
- National Legislation Database, H. 389/2007. (XII. 23.) Government Regulation. Available online: http://njt.hu/cgi_bin/njt_doc.cgi?docid=112846.354226 (accessed on 18 October 2019).
- Hungarian Energy and Public Utility Regulatory Authority. Renewable Energies. Available online: http://www.mekh.hu/megujulo-energiak-villamos-energia (accessed on 18 October 2019).
- PANNON Pro Innovations Ltd. Practical Experiences of PV and Storage Systems. Available online: https://klimainnovacio.hu/en/pannon-pro-innovations (accessed on 2 November 2019).
- Website of the Hungarian Government. Hungarian Official Gazette, 2019, No. 222; Website of the Hungarian Government: Budapest, Hungary, 2019. [Google Scholar]
- Schneider Electric. Hybrid Inverter for Solar Power - Conext XW+ 230V | SE Solar. Available online: https://solar.schneider-electric.com/product/conext-xw-hybrid-inverter/ (accessed on 24 May 2018).
- Schneider Electric. Energy Storage System. Available online: https://solar.schneider-electric.com/solution/energy-storage-system/ (accessed on 11 October 2018).
- Schneider Electric. Energy Storage Solutions for Utility-Scale Applications; Schneider Electric: Rueil-Malmaison, France, 2016. [Google Scholar]
- EU-Solar Zrt. Growatt 10000HYP Inverter. Available online: http://www.growatt.hu/growatt-10000hyp-inverter/ (accessed on 20 October 2019).
- VARTA Storage GmbH. VARTA—Element 130 Jahre Batterie-Expertise in Ihrem Energiespeicher; VARTA Storage GmbH: Nördlingen, Germany, 2019. [Google Scholar]
- Energen Power Holding AB. Energen, IntelliStoree; Energen Power Holding AB: Budapest, Hungary, 2018. [Google Scholar]
- PANNON Green Power Ltd. Practical-Economic Experiences of PV Energy Storage Systems. Available online: https://pannongreenpower.hu/en/home/ (accessed on 30 August 2019).
- Világgazdaság. Information about Elmű-Émász Energy Storage System. Available online: https://www.vg.hu/vallalatok/energia/az-elmu-emasz-megkapta-az-elso-energiataroloi-engedelyt-1018983/ (accessed on 30 November 2018).
- ALTEO Energiaszolgáltató Nyrt. Information about Alteo Energy Storage System. Available online: https://alteo.hu/energiatarolo-projekt/a-projekt-megvalositasa/ (accessed on 30 November 2018).
- Danish Green Technology LLC. AXIstorage Li 7S. Available online: http://www.danishgreentech.com/index.php/shop/solar/energy-storage/axistorage-li-7s-detail (accessed on 20 November 2018).
Battery Technology | Reference Energy Installation Cost in 2020 [USD/kWh] | Expected Reference energy Installation Cost in 2030 [USD/kWh] |
---|---|---|
VRFB | 282 | 119 |
* LTO | 887 | 478 |
* LFP | 477 | 224 |
* NMC | 348 | 167 |
* NCA | 279 | 145 |
Entso-E Project Number | Country | Expected Commission Date | Current Status |
---|---|---|---|
1011 | Spain | 2020 | in permitting |
1000 | Austria | 2022 | under construction |
1002 | Belgium | 2022 | planned but not permitted yet |
1006 | Greece | 2023 | in permitting |
1012 | Spain | 2023 | in permitting |
1009 | Lithuania | 2024 | under construction |
1030 | Ireland | 2024 | planned but not permitted yet |
1003 | Bulgaria | 2025 | in permitting |
1015 | UK | 2025 | under construction |
1026 | Austria | 2025 | in permitting |
1025 | Ireland | 2026 | under construction |
1014 | UK | 2027 | in permitting |
1019 | Spain | 2027 | in permitting |
1029 | Slovenia | 2027 | in permitting |
1004 | Estonia | 2028 | in permitting |
1027 | Spain | 2028 | in permitting |
1001 | Austria | 2034 | in permitting |
Battery Technology | Li-ion | VRFB |
---|---|---|
Maximum battery charging/discharging efficiency [%] | 98/98 | 94/88 |
Hybrid inverter maximum efficiency [%] | 95 | |
Other system losses [%] | 2 | |
Charge/discharge time [h] | 2/2 |
The Magnitude (x) of the Day-Ahead PV Power Forecast Divergence Compared to the Real PV Power Data [MW] | Frequency of Positive Divergence in the Case of Day-Ahead Forecast [%] | Frequency of Negative Divergence in the Case of Day-Ahead Forecast (Absolute Value) [%] |
0< x ≤10 | 27.2 | 35.9 |
10< x ≤20 | 16.2 | 15.0 |
20< x ≤30 | 12.3 | 10.8 |
30< x ≤40 | 9.6 | 8.3 |
40< x ≤50 | 7.0 | 6.4 |
50< x ≤60 | 5.4 | 5.0 |
60< x ≤70 | 4.2 | 3.9 |
70< x ≤80 | 3.3 | 3.0 |
80< x ≤90 | 2.5 | 2.3 |
90< x ≤100 | 2.2 | 1.8 |
100< x ≤150 | 6.5 | 5.0 |
150< x ≤200 | 2.4 | 1.7 |
200< x ≤250 | 0.8 | 0.6 |
250< x ≤300 | 0.2 | 0.3 |
300< x ≤350 | 0.06 | 0.1 |
350< x ≤400 | 0.01 | 0.03 |
400< x ≤450 | 0 | 0.02 |
500< x ≤550 | 0 | 0.002 |
The Magnitude (x) of the Most Recent (Intraday) PV Power Forecast Divergence Compared to the Real PV Power Data [MW] | Frequency of Positive Divergence in the Case of Most Recent Forecast [%] | Frequency of Negative Divergence in the Case of Most Recent Forecast (Absolute Value) [%] |
0< x ≤10 | 35.4 | 43.3 |
10< x ≤20 | 18.0 | 16.4 |
20< x ≤30 | 12.7 | 10.8 |
30< x ≤40 | 9.0 | 7.7 |
40< x ≤50 | 6.5 | 5.7 |
50< x ≤60 | 4.8 | 4.1 |
60< x ≤70 | 3.5 | 3.0 |
70< x ≤80 | 2.5 | 2.4 |
80< x ≤90 | 2.0 | 1.7 |
90< x ≤100 | 1.4 | 1.2 |
100< x ≤150 | 3.2 | 2.7 |
150< x ≤200 | 0.7 | 0.7 |
200< x ≤250 | 0.20 | 0.2 |
250< x ≤300 | 0.01 | 0.1 |
300< x ≤350 | 0.02 | 0.02 |
350< x ≤400 | 0 | 0.02 |
400< x ≤450 | 0 | 0.01 |
500< x ≤550 | 0 | 0.004 |
The Magnitude (x) of the Day-Ahead PV Energy Forecast Divergence Compared to the Real PV Energy Data [MWh] | Frequency of Positive Divergence in the Case of Day-Ahead Forecast [%] | Frequency of Negative Divergence in the Case of Day-Ahead Forecast (Absolute Value) [%] |
0< x ≤10 | 13 | 17 |
10< x ≤20 | 4 | 5 |
20< x ≤30 | 4 | 4 |
30< x ≤40 | 3 | 4 |
40< x ≤50 | 4 | 3 |
50< x ≤60 | 2 | 3 |
60< x ≤70 | 3 | 3 |
70< x ≤80 | 3 | 3 |
80< x ≤90 | 3 | 2 |
90< x ≤100 | 2 | 2 |
100< x ≤200 | 17 | 15 |
200< x ≤300 | 13 | 13 |
300< x ≤400 | 7 | 8 |
400< x ≤500 | 6 | 5 |
500< x ≤600 | 4 | 4 |
600< x ≤700 | 2 | 3 |
700< x ≤800 | 3 | 2 |
800< x ≤900 | 2 | 1 |
900< x ≤1000 | 1 | 0.4 |
1000< x ≤1500 | 3 | 2 |
1500< x ≤2000 | 1 | 1 |
2000< x ≤2500 | 0.2 | 0.3 |
2500< x ≤3000 | 0 | 0.05 |
The Magnitude (x) of the Most Recent (Intraday) PV Energy Forecast Divergence Compared to the Real PV Energy Data [MWh] | Frequency of Positive Divergence in the Case of Most Recent Forecast [%] | Frequency of Negative Divergence in the Case of Most Recent Forecast (Absolute Value) [%] |
0< x ≤10 | 12 | 13 |
10< x ≤20 | 5 | 6 |
20< x ≤30 | 4 | 4 |
30< x ≤40 | 4 | 4 |
40< x ≤50 | 4 | 4 |
50< x ≤60 | 3 | 3 |
60< x ≤70 | 3 | 4 |
70< x ≤80 | 3 | 3 |
80< x ≤90 | 3 | 3 |
90< x ≤100 | 3 | 2 |
100< x ≤200 | 24 | 22 |
200< x ≤300 | 14 | 13 |
300< x ≤400 | 8 | 8 |
400< x ≤500 | 4 | 5 |
500< x ≤600 | 3 | 2 |
600< x ≤700 | 1 | 1 |
700< x ≤800 | 1 | 1 |
800< x ≤900 | 0.2 | 0.3 |
900< x ≤1000 | 0.2 | 0.2 |
1000< x ≤1500 | 0.5 | 0.4 |
1500< x ≤2000 | 0 | 0 |
2000< x ≤2500 | 0 | 0.05 |
2500< x ≤3000 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zsiborács, H.; Hegedűsné Baranyai, N.; Zentkó, L.; Mórocz, A.; Pócs, I.; Máté, K.; Pintér, G. Electricity Market Challenges of Photovoltaic and Energy Storage Technologies in the European Union: Regulatory Challenges and Responses. Appl. Sci. 2020, 10, 1472. https://doi.org/10.3390/app10041472
Zsiborács H, Hegedűsné Baranyai N, Zentkó L, Mórocz A, Pócs I, Máté K, Pintér G. Electricity Market Challenges of Photovoltaic and Energy Storage Technologies in the European Union: Regulatory Challenges and Responses. Applied Sciences. 2020; 10(4):1472. https://doi.org/10.3390/app10041472
Chicago/Turabian StyleZsiborács, Henrik, Nóra Hegedűsné Baranyai, László Zentkó, Adrián Mórocz, István Pócs, Kinga Máté, and Gábor Pintér. 2020. "Electricity Market Challenges of Photovoltaic and Energy Storage Technologies in the European Union: Regulatory Challenges and Responses" Applied Sciences 10, no. 4: 1472. https://doi.org/10.3390/app10041472
APA StyleZsiborács, H., Hegedűsné Baranyai, N., Zentkó, L., Mórocz, A., Pócs, I., Máté, K., & Pintér, G. (2020). Electricity Market Challenges of Photovoltaic and Energy Storage Technologies in the European Union: Regulatory Challenges and Responses. Applied Sciences, 10(4), 1472. https://doi.org/10.3390/app10041472