# Average Error Probability of an Optically Pre-Amplified Pulse-Position Modulation Multichannel Receiver under Malaga-ℳ Fading

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Optically Pre-Amplified PPM Receiver

## 3. PPM Probability of Error

## 4. Average PER in Malaga-$\mathcal{M}$ Fading

## 5. Diversity Reception in Malaga-$\mathcal{M}$ Fading

## 6. Results on Other Distributions

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

EDFA | Erbium doped fiber amplifier |

EGC | Equal-gain combiner |

OWC | Optical wireless communication |

PER | Probability of error |

PPM | Pulse-position modulation |

RV | Random variable |

SEP | Symbol error probability |

SOA | Semiconductor optical amplifier |

## References

- Li, J.; Uysal, M. Optical wireless communications: System model, capacity and coding. In Proceedings of the 2003 IEEE 58th Vehicular Technology Conference, Orlando, FL, USA, 6–9 October 2003; Volume 1, pp. 168–172. [Google Scholar]
- Djordjevic, I.B. Adaptive Modulation and Coding for Free-Space Optical Channels. J. Opt. Commun. Netw.
**2010**, 2, 221–229. [Google Scholar] [CrossRef] - Sandalidis, H.G. Coded Free-Space Optical Links over Strong Turbulence and Misalignment Fading Channels. IEEE Trans. Commun.
**2011**, 59, 669–674. [Google Scholar] [CrossRef] - Safari, M.; Uysal, M. Relay-assisted free-space optical communication. IEEE Trans. Wirel. Commun.
**2008**, 7, 5441–5449. [Google Scholar] [CrossRef] [Green Version] - Kazemlou, S.; Hranilovic, S.; Kumar, S. All-Optical Multihop Free-Space Optical Communication Systems. J. Light. Technol.
**2011**, 29, 2663–2669. [Google Scholar] [CrossRef] - Chatzidiamantis, N.D.; Michalopoulos, D.S.; Kriezis, E.E.; Karagiannidis, G.K.; Schober, R. Relay selection protocols for relay-assisted free-space optical systems. IEEE/OSA J. Opt. Commun. Netw.
**2013**, 5, 92–103. [Google Scholar] [CrossRef] - Peppas, K.P.; Stassinakis, A.N.; Nistazakis, H.E.; Tombras, G.S. Capacity analysis of dual amplify-and-forward relayed free-space optical communication systems over turbulence channels with pointing errors. IEEE/OSA J. Opt. Commun. Netw.
**2013**, 5, 1032–1042. [Google Scholar] [CrossRef] - Xu, F.; Khalighi, A.; Caussé, P.; Bourennane, S. Channel coding and time-diversity for optical wireless links. Opt. Express
**2009**, 17, 872–887. [Google Scholar] [CrossRef] - Tsiftsis, T.A.; Sandalidis, H.G.; Karagiannidis, G.K.; Uysal, M. Optical wireless links with spatial diversity over strong atmospheric turbulence channels. IEEE Trans. Wirel. Commun.
**2009**, 8, 951–957. [Google Scholar] [CrossRef] [Green Version] - Nistazakis, H.E.; Tombras, G.S. On the use of wavelength and time diversity in optical wireless communication systems over gamma–gamma turbulence channels. Opt. Laser Technol.
**2012**, 44, 2088–2094. [Google Scholar] [CrossRef] - Yang, L.; Gao, X.; Alouini, M. Performance Analysis of Free-Space Optical Communication Systems With Multiuser Diversity Over Atmospheric Turbulence Channels. IEEE Photonics J.
**2014**, 6, 1–17. [Google Scholar] [CrossRef] [Green Version] - Yiannopoulos, K.; Sagias, N.C.; Boucouvalas, A.C.; Peppas, K. Optimal Combining for Optical Wireless Systems With Amplification: The χ
^{2}Noise Regime. IEEE Photonics Technol. Lett.**2018**, 30, 119–122. [Google Scholar] [CrossRef] - Razavi, M.; Shapiro, J.H. Wireless optical communications via diversity reception and optical preamplification. IEEE Trans. Wirel. Commun.
**2005**, 4, 975–983. [Google Scholar] [CrossRef] - Bayaki, E.; Michalopoulos, D.S.; Schober, R. EDFA-Based All-Optical Relaying in Free-Space Optical Systems. IEEE Trans. Commun.
**2012**, 60, 3797–3807. [Google Scholar] [CrossRef] - Abtahi, M.; Lemieux, P.; Mathlouthi, W.; Rusch, L.A. Suppression of Turbulence-Induced Scintillation in Free-Space Optical Communication Systems Using Saturated Optical Amplifiers. J. Light. Technol.
**2006**, 24, 4966–4973. [Google Scholar] [CrossRef] - Rizou, Z.V.; Zoiros, K.E.; Hatziefremidis, A. Signal amplitude and phase equalization technique for free space optical communications. In Proceedings of the 2013 15th International Conference on Transparent Optical Networks (ICTON), Cartagena, Spain, 23–27 June 2013. [Google Scholar]
- Yiannopoulos, K.; Sagias, N.C.; Boucouvalas, A.C. Fade Mitigation Based on Semiconductor Optical Amplifiers. J. Light. Technol.
**2013**, 31, 3621–3630. [Google Scholar] [CrossRef] - Yiannopoulos, K.; Sagias, N.C.; Boucouvalas, A.C. On the Performance of Semiconductor Optical Amplifier-Assisted Outdoor Optical Wireless Links. IEEE J. Sel. Areas Commun.
**2015**, 33, 1869–1876. [Google Scholar] [CrossRef] - Wilson, S.G.; Brandt-Pearce, M.; Cao, Q.; Leveque, J.H. Free-space optical MIMO transmission with Q-ary PPM. IEEE Trans. Commun.
**2005**, 53, 1402–1412. [Google Scholar] [CrossRef] - Caplan, D.O.; Robinson, B.S.; Murphy, R.J.; Stevens, M.L. Demonstration of 2.5-Gslot/s optically-preamplified M-PPM with 4 photons/bit receiver sensitivity. In Proceedings of the Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Anaheim, CA, USA, 6 March 2005. [Google Scholar]
- Stevens, M.L.; Boroson, D.M. A simple delay-line 4-PPM demodulator with near-optimum performance. Opt. Express
**2012**, 20, 5270–5280. [Google Scholar] [CrossRef] - Aladeloba, A. Performance evaluation of optically preamplified digital pulse position modulation turbulent free-space optical communication systems. IET Optoelectron.
**2012**, 6, 66–74. [Google Scholar] [CrossRef] - Zhao, W.; Han, Y.; Yi, X. Error performance analysis for FSO systems with diversity reception and optical preamplification over gamma–gamma atmospheric turbulence channels. J. Mod. Opt.
**2013**, 60, 1060–1068. [Google Scholar] [CrossRef] - Humblet, P.A.; Azizoglu, M. On the bit error rate of lightwave systems with optical amplifiers. J. Light. Technol.
**1991**, 9, 1576–1582. [Google Scholar] [CrossRef] [Green Version] - Boucouvalas, A.C.; Sagias, N.C.; Yiannopoulos, K. Accurate Evaluation of the Average Probability of Error of Pulse Position Modulation in Amplified Optical Wireless Communications under Turbulence. Appl. Sci.
**2019**, 9, 749. [Google Scholar] [CrossRef] [Green Version] - Andrews, L.C.; Phillips, R.L. Laser Beam Propagation through Random Media, 2nd ed.; SPIE Press: Bellingham, WA, USA, 2005. [Google Scholar]
- Jurado-Navas, A.; Garrido-Balsells, J.M.; Paris, J.F.; Puerta-Notario, A. A Unifying Statistical Model for Atmospheric Optical Scintillation. In Numerical Simulations of Physical and Engineering Processes; Awrejcewicz, J., Ed.; IntechOpen: Rijeka, Croatia, 2011; Chapter 8. [Google Scholar]
- Samimi, H. New statistical model for atmospheric optical scintillation and its application. IET Optoelectron.
**2013**, 7, 31–37. [Google Scholar] [CrossRef] - Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th ed.; Elsevier/Academic Press: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Hughes, L.W. A simple upper bound on the error probability for orthogonal signals in white noise. IEEE Trans. Commun.
**1992**, 40, 670. [Google Scholar] [CrossRef] - Truesdell, C. On the Addition and Multiplication Theorems for Special Functions. Proc. Natl. Acad. Sci. USA
**1950**, 36, 752–755. [Google Scholar] [CrossRef] [Green Version] - Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover: New York, NY, USA, 1964. [Google Scholar]
- Eger, S. Some Elementary Congruences for the Number of Weighted Integer Compositions. J. Integer Seq.
**2015**, 18, 1–18. [Google Scholar]

**Figure 1.**Optically pre-amplified pulse-position modulation (PPM) receiver. OpAmp: optical amplifier; Fl: optical filter; PD: photodiode; Int: time-slot integrator.

**Figure 3.**PPM average PER in Malaga-$\mathcal{M}$ fading. The plots correspond to no fading (solid), weak fading (dash), moderate fading (dash-dot) and strong fading (dash-dot-dot). The noise modes are equal to $M=2$ and $M=200$ in (

**a**) and (

**b**), respectively.

**Figure 4.**Diversity reception of optically pre-amplified PPM under weak Malaga-$\mathcal{M}$ fading. The noise modes are equal to $M=2$ and $M=200$ in (

**a**) and (

**b**), respectively.

**Figure 5.**Diversity reception of optically pre-amplified PPM under moderate Malaga-$\mathcal{M}$ fading. The noise modes are equal to $M=2$ and $M=200$ in (

**a**) and (

**b**), respectively.

**Figure 6.**Diversity reception of optically pre-amplified PPM under strong Malaga-$\mathcal{M}$ fading. The noise modes are equal to $M=2$ and $M=200$ in (

**a**) and (

**b**), respectively.

**Figure 7.**Diversity reception of optically pre-amplified PPM under $\gamma -\gamma $ fading (100 m link). The noise modes are equal to $M=2$ and $M=200$ in (

**a**) and (

**b**), respectively.

**Figure 8.**Diversity reception of optically pre-amplified PPM under $\gamma -\gamma $ fading (500 m link). The noise modes are equal to $M=2$ and $M=200$ in (

**a**) and (

**b**), respectively.

**Figure 9.**Diversity reception of optically pre-amplified PPM under negative exponential fading. The noise modes are equal to $M=2$ and $M=200$ in (

**a**) and (

**b**), respectively.

Irradiance Fluctuations | |||
---|---|---|---|

Parameter | Weak | Moderate | Strong |

$\alpha $ | 50 | 2.55 | 2.2814 |

$\beta $ | 14 | 22 | 33 |

$\Omega $ | 1.0621 | 0.4618 | 1.33 |

${b}_{0}$ | 0.0216 | 0.6525 | 0.4231 |

$\rho $ | 0.86 | 0.988 | 0.84 |

${\varphi}_{A}-{\varphi}_{B}$ | $\pi /2$ |

Parameter | l–100 m | l–500 m |
---|---|---|

$\alpha $ | 16.53 | 4.04 |

$\beta $ | 14.91 | 1.53 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yiannopoulos, K.; Sagias, N.C.; Boucouvalas, A.C.
Average Error Probability of an Optically Pre-Amplified Pulse-Position Modulation Multichannel Receiver under Malaga-ℳ Fading. *Appl. Sci.* **2020**, *10*, 1141.
https://doi.org/10.3390/app10031141

**AMA Style**

Yiannopoulos K, Sagias NC, Boucouvalas AC.
Average Error Probability of an Optically Pre-Amplified Pulse-Position Modulation Multichannel Receiver under Malaga-ℳ Fading. *Applied Sciences*. 2020; 10(3):1141.
https://doi.org/10.3390/app10031141

**Chicago/Turabian Style**

Yiannopoulos, Konstantinos, Nikos C. Sagias, and Anthony C. Boucouvalas.
2020. "Average Error Probability of an Optically Pre-Amplified Pulse-Position Modulation Multichannel Receiver under Malaga-ℳ Fading" *Applied Sciences* 10, no. 3: 1141.
https://doi.org/10.3390/app10031141