Feasibility Study for Spatial Distribution of Diesel Oil in Contaminated Soils by Laser Induced Fluorescence
Abstract
Featured Application
Abstract
1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Quantitative Analysis
3.2. Three-Dimensional Diffusion Models
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sherry, A.; Andrade, L.; Velenturf, A.; Christgen, B.; Gray, N.D.; Head, I.M. How to access and exploit natural resources sustainably: Petroleum biotechnology. Microb. Biotechnol. 2017, 10, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Aburas, H.; Demirbas, A. The Caspian Sea Basin, Middle East Petroleum Resources, and the Importance of Turkey. Petrol. Sci. Technol. 2015, 33, 397–405. [Google Scholar] [CrossRef]
- Edokpolo, B.; Yu, Q.J.; Connell, D. Health risk assessment for exposure to benzene in petroleum refinery environments. Int. J. Environ. Res. Public Health 2015, 12, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Connor, E.G.; McHugh, M.K.; Crimaldi, J.P. Quantification of airborne odor plumes using planar laser-induced fluorescence. Exp. Fluids 2018, 59, 137. [Google Scholar] [CrossRef]
- Maes, N.; Meijer, M.; Dam, N.; Somers, B.; Toda, H.B.; Bruneaux, G.; Skeen, S.A.; Pickett, L.M.; Manin, J. Characterization of Spray A flame structure for parametric variations in ECN constant-volume vessels using chemiluminescence and laser-induced fluorescence. Combust. Flame 2016, 174, 138–151. [Google Scholar] [CrossRef]
- Charogiannis, A.; An, J.S.; Markides, C.N. A simultaneous planar laser-induced fluorescence, particle image velocimetry and particle tracking velocimetry technique for the investigation of thin liquid-film flows. Exp. Therm. Fluid Sci. 2015, 68, 516–536. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, W.; Lei, Q.; Ma, L. Single-shot volumetric laser induced fluorescence (VLIF) measurements in turbulent flows seeded with iodine. Opt. Express 2015, 23, 33408–33418. [Google Scholar] [CrossRef] [PubMed]
- Hodáková, J.; Preisler, J.; Foret, F.; Kubáň, P. Sensitive determination of glutathione in biological samples by capillary electrophoresis with green (515 nm) laser-induced fluorescence detection. J. Chromatogr. A 2015, 1391, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Gameiro, C.; Utkin, A.B.; Cartaxana, P.; Silva, J.M.; Matos, A.R. The use of laser induced chlorophyll fluorescence (LIF) as a fast and non destructive method to investigate water deficit in Arabidopsis. Agric. Water Manag. 2016, 164, 127–136. [Google Scholar] [CrossRef]
- Richardson, D.R.; Roy, S.; Gord, J.R. Femtosecond, two-photon, planar laser-induced fluorescence of carbon monoxide in flames. Opt. Lett. 2017, 42, 875–878. [Google Scholar] [CrossRef] [PubMed]
- Lačná, J.; Foret, F.; Kubáň, P. Sensitive determination of malondialdehyde in exhaled breath condensate and biological fluids by capillary electrophoresis with laser induced fluorescence detection. Talanta 2017, 169, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhu, Z.; Zhou, R.; Zhao, N.; Yi, R.; Yang, X.; Li, X.; Guo, L.; Zeng, X.; Lu, Y. Determination of carbon content in steels using laser-induced breakdown spectroscopy assisted with laser-induced radical fluorescence. Anal. Chem. 2017, 89, 8134–8139. [Google Scholar] [CrossRef] [PubMed]
- Cazorla, M.; Wolfe, G.M.; Bailey, S.A.; Swanson, A.K.; Arkinson, H.L.; Hanison, T.F. A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere. Atmos. Meas. Technol. 2015, 8, 541–552. [Google Scholar] [CrossRef]
- Baburaj, P.V.A.; Subhash, N.; Unni, N.G.; Anil, M.K.; George, R.M. Development of Laser-Induced Multispectral Fluorescence Imaging System For Studying Coral Bleaching; Life Science Informatics Publications: Maharashtra, India, 2018. [Google Scholar]
- Honza, R.; Ding, C.-P.; Dreizler, A.; Böhm, B. Flame imaging using planar laser induced fluorescence of sulfur dioxide. Appl. Phys. B 2017, 123, 246. [Google Scholar] [CrossRef]
- Bardi, M.; Lella, A.D.; Bruneaux, G. A novel approach for quantitative measurements of preferential evaporation of fuel by means of two-tracer laser induced fluorescence. Fuel 2019, 239, 521–533. [Google Scholar] [CrossRef]
- Yang, J.; Gong, W.; Shi, S.; Du, L.; Sun, J.; Ma, Y.-Y.; Song, S.-L. Accurate identification of nitrogen fertilizer application of paddy rice using laser-induced fluorescence combined with support vector machine. Plant Soil Eniviron. 2015, 61, 501–506. [Google Scholar] [CrossRef]
- Töger, J.; Bidhult, S.; Revstedt, J.; Carlsson, M.; Arheden, H.; Heiberg, E. Independent validation of four-dimensional flow MR velocities and vortex ring volume using particle imaging velocimetry and planar laser-Induced fluorescence. Magn. Reson. Med. 2016, 75, 1064–1075. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, J.; Hashimoto, N.; Nakatsuka, N.; Tainaka, K.; Tsuji, H.; Tanno, K.; Watanbe, H.; Makino, H.; Akamatsu, F. Simultaneous imaging of Mie scattering, PAHs laser induced fluorescence and soot laser induced incandescence to a lab-scale turbulent jet pulverized coal flame. Proc. Combust. Inst. 2019, 37, 3045–3052. [Google Scholar] [CrossRef]
- Wang, Z.; Stamatoglou, P.; Zhou, B.; Aldén, M.; Bai, X.-S.; Richter, M. Investigation of OH and CH2O distributions at ultra-high repetition rates by planar laser induced fluorescence imaging in highly turbulent jet flames. Fuel 2018, 234, 1528–1540. [Google Scholar] [CrossRef]
Soil Moisture | Lateral Diffusion Breadth(cm) | Longitudinal Penetration Depth(cm) |
---|---|---|
0% | 5.43 | 5.05 |
5% | 6.44 | 5.01 |
10% | 10.11 | 4.11 |
Soil Moisture | The Contaminated Soil Volume | The Calculated Amount of Diesel Oil (g) | RSD (%) |
---|---|---|---|
0% | 233.90 cm3 | 5.57 | 5.09 |
5% | 332.70 cm3 | 5.81 | 9.62 |
10% | 660.05 cm3 | 5.72 | 7.92 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Y.; Zuo, Z.; Shi, C.; Hu, X. Feasibility Study for Spatial Distribution of Diesel Oil in Contaminated Soils by Laser Induced Fluorescence. Appl. Sci. 2020, 10, 1103. https://doi.org/10.3390/app10031103
Gu Y, Zuo Z, Shi C, Hu X. Feasibility Study for Spatial Distribution of Diesel Oil in Contaminated Soils by Laser Induced Fluorescence. Applied Sciences. 2020; 10(3):1103. https://doi.org/10.3390/app10031103
Chicago/Turabian StyleGu, Yanhong, Zhaolu Zuo, Chaoyi Shi, and Xueyou Hu. 2020. "Feasibility Study for Spatial Distribution of Diesel Oil in Contaminated Soils by Laser Induced Fluorescence" Applied Sciences 10, no. 3: 1103. https://doi.org/10.3390/app10031103
APA StyleGu, Y., Zuo, Z., Shi, C., & Hu, X. (2020). Feasibility Study for Spatial Distribution of Diesel Oil in Contaminated Soils by Laser Induced Fluorescence. Applied Sciences, 10(3), 1103. https://doi.org/10.3390/app10031103