Mechanical Properties of Fiber-Reinforced Soil under Triaxial Compression and Parameter Determination Based on the Duncan-Chang Model
Abstract
:1. Introduction
2. Materials
2.1. Soil Samples
2.2. Polypropylene Fiber
3. Design of the Test
3.1. Specimen Preparation
3.2. Test Scheme and Instrumentation
4. Analysis of Test Results
4.1. Stress-Strain Relationship Analysis of Fiber-Reinforced Soil
- (1)
- Effect of fiber content
- (2)
- Effect of fiber length
- (3)
- Effect of confining pressure
4.2. Analysis of the Failure Strength of Fiber-Reinforced Soil and the Empirical Prediction Model
- (1)
- Effect of fiber content
- (2)
- Effect of fiber length
- (3)
- Effect of confining pressure
- (4)
- Empirical model for predicting the failure strength of fiber-reinforced soil
4.3. Parameter Determination Based on the Duncan-Chang Model
- (1)
- Effect of fiber content
- (2)
- Effect of fiber length
- (3)
- Effect of confining pressure
5. Conclusions
- (1)
- The strength of the fiber-reinforced soil first increased and then decreased as the fiber content and length increased. The fiber reinforcement effect was the best at a fiber content of 0.2% and fiber length of 12 mm in all test conditions. As the confining pressure increased, the strength of the fiber-reinforced soil increased.
- (2)
- The failure pattern of the fiber-reinforced soil specimens was due to bulging deformation, showing plastic failure characteristics.
- (3)
- Through regression analysis of our test data, an empirical model for predicting the failure strength of fiber-reinforced soil was established. This model considers the fiber content, fiber length, and confining pressure. It can rapidly estimate the failure strength of fiber-reinforced soil and provide a reference for engineering applications.
- (4)
- The stress-strain curve of the fiber-reinforced soil exhibited strain-hardening characteristics and could be fitted by a hyperbolic curve. Thus, the Duncan-Chang model can be used to mathematically describe the stress-strain relationship of the fiber-reinforced soil. A method for calculating and , the Duncan-Change model parameters, was proposed, which provides a reference for the accurate expression of the mechanical properties of heavy-haul railway subgrade.
- (5)
- It is important to note that this work concerned a case study, which is intended to develop a strength empirical model for predicting the strength of the fiber-reinforced fill with a modest number of samples and tests. Accordingly, more tests are necessary to be conducted to further verify the applicability of the proposed models.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bao, C.; Ding, J. Researches and applications of fiber reinforced soils. Soil Eng. Found. 2012, 26, 80–83. [Google Scholar] [CrossRef]
- Liu, B.; Tang, C.; Li, J.; Wang, D.; Zhu, K.; Tang, W. Advances in engineering properties of fiber reinforced soil. J. Eng. Geol. 2013, 21, 540–547. [Google Scholar] [CrossRef]
- Shao, W.; Cetin, B.; Li, Y.; Li, J.; Li, L. Experimental investigation of mechanical properties of sands reinforced with discrete randomly distributed fiber. Geotech. Geol. Eng. 2014, 32, 901–910. [Google Scholar] [CrossRef]
- Botero, E.; Ossa, A.; Sherwell, G.; Ovando-Shelley, E. Stress–strain behavior of a silty soil reinforced with polyethylene terephthalate (PET). Geotext. Geomembr. 2015, 43, 363–369. [Google Scholar] [CrossRef]
- Muntohar, A.S.; Widianti, A.; Hartono, E.; Diana, W. Engineering properties of silty soil stabilized with lime and rice husk ash and reinforced with waste plastic fiber. J. Mater. Civ. Eng. 2013, 25, 1260–1270. [Google Scholar] [CrossRef]
- Machado, S.L.; Vilar, O.M.; Carvalho, M.F. Constitutive model for long term municipal solid waste mechanical behavior. Comput. Geotech. 2008, 35, 775–790. [Google Scholar] [CrossRef]
- Kutara, K.; Miki, H.; Horiya, S.; Ishizaki, H.; Fujiki, H. Mechanical behavior of reinforced soil by continuous threads. Proc. Geotext. Symp. 1988, 3, 27–33. [Google Scholar] [CrossRef]
- You, B.; Xu, H.; Dong, J. Triaxial Tests of Expansive soil reinforced with basalt fiber. J. Disaster Prev. Mitig. Eng. 2015, 35, 503–507+514. [Google Scholar] [CrossRef]
- Gao, L.; Hu, G.; Xu, Y.; Hu, Y.; Gong, Y. Triaxial tests clay reinforced by basalt fiber. Chin. J. Geotech. Eng. 2017, 39, 198–203. [Google Scholar] [CrossRef]
- Liu, F.; Sun, H.; Ge, X. Glass Fiber-reinforced sand studied by triaxial experiments. J. Shanghai Jiaotong Univ. 2011, 45, 762–766+771. [Google Scholar] [CrossRef]
- Mirzababaei, M.; Miraftab, M.; Mohamed, M.; McMahon, P. Unconfined compression strength of reinforced clays with carpet waste fibers. J. Geotech. Geoenviron. Eng. 2013, 139, 483–493. [Google Scholar] [CrossRef]
- Akbulut, S.; Arasan, S.; Kalkan, E. Modification of Clayey Soils using scrap tire rubber and synthetic fibers. Appl. Clay Sci. 2007, 38, 23–32. [Google Scholar] [CrossRef]
- Consoli, N.C.; Casagrande, M.D.T.; Coop, M.R. Performance of a fibre-reinforced sand at large shear strains. Géotechnique 2007, 57, 751–756. [Google Scholar] [CrossRef]
- Cristelo, N.; Cunha, V.M.C.F.; Dias, M.; Gomes, A.T.; Miranda, T.; Araújo, N. Influence of discrete fibre reinforcement on the uniaxial compression response and seismic wave velocity of a cement-stabilised sandy-clay. Geotext. Geomembr. 2015, 43, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Plé, O.; Lê, T.N.H. Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay. Geotext. Geomembr. 2012, 32, 111–116. [Google Scholar] [CrossRef]
- Michalowski, R.L.; Zhao, A. Failure of Fiber-Reinforced Granular Soils. J. Geotech. Eng. 1996, 122, 226–234. [Google Scholar] [CrossRef]
- Wood, D.M.; Russell, A.R.; Ibraim, E.; Diambra, A. Determination of fibre orientation distribution in reinforced sand. Géotechnique 2007, 57, 623–628. [Google Scholar] [CrossRef]
- Ibraim, E.; Fourmont, S. Behaviour of sand reinforced with fibres. In Soil Stress-Strain Behaviour: Measurement, Modelling and Analysis. A Collection of Papers of the Geotechnical Symposium, Rome, Italy, 16–17 March 2006; Springer: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Ibraim, E.; Diambra, A.; Russell, A.R.; Wood, D.M. Assessment of laboratory sample preparation for fibre reinforced sands. Geotext. Geomembr. 2012, 34, 69. [Google Scholar] [CrossRef]
- Diambra, A.; Ibraim, E.; Wood, D.M.; Russell, A.R. Fibre reinforced sands: Experiments and modelling. Geotext. Geomembr. 2010, 28, 238–250. [Google Scholar] [CrossRef]
- Ang, E.C.; Erik Loehr, J. Specimen Size Effects for Fiber-Reinforced Silty Clay in Unconfined Compression. Geotech. Test. J. 2003, 26, 191–200. [Google Scholar] [CrossRef]
- Wang, D.; Tang, C.; Li, J.; Liu, B.; Tang, W.; Zhu, K. Shear strength characteristics of fiber-reinforced unsaturated cohesive soils. Chin. J. Geotech. Eng. 2013, 35, 1933–1940. [Google Scholar]
- Kumar, A.; Walia, B.S.; Bajaj, A. Influence of fly ash, lime, and polyester fibers on compaction and strength properties of expansive soil. J. Mater. Civ. Eng. 2007, 19, 242–248. [Google Scholar] [CrossRef]
- Welker, A.L.; Josten, N. Interface Friction of a Geomembrane with a Fiber Reinforced Soil. In Proceedings of the Slopes and Retaining Structures under Seismic and Static Conditions, Austin, TX, USA, 24–26 January 2005; American Society of Civil Engineers: Austin, TX, USA, 2005; pp. 1–8. [Google Scholar]
- Prabakar, J.; Sridhar, R.S. Effect of random inclusion of sisal fibre on strength behaviour of soil. Constr. Build. Mater. 2002, 16, 123–131. [Google Scholar] [CrossRef]
- Cai, Y.; Shi, B.; Gao, W.; Chen, F.; Tang, C. Experimental study on engineering properties of fibre-lime treated soils. Chin. J. Geotech. Eng. 2006, 28, 1283–1287. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X. Study on strength of polypropylene fiber reinforced expansive soil. Soil Eng. Found. 2010, 24, 71–73+76. [Google Scholar] [CrossRef]
- Wang, P.; Tang, C.; Sun, K.; Chen, Z.; Xu, S.; Shi, B. Experimental investigation on consolidation properties of fiber reinforced municipal sludge. J. Eng. Geol. 2015, 23, 687–694. [Google Scholar] [CrossRef]
- Zhao, N.; Jing, L. Experimental study on strength properties of texsol. J. Chongqing Univ. Technol. (Nat. Sci.) 2010, 24, 47–51+68. [Google Scholar] [CrossRef]
- Kumar, A.; Walia, B.S.; Mohan, J. Compressive strength of fiber reinforced highly compressible clay. Constr. Build. Mater. 2006, 20, 1063–1068. [Google Scholar] [CrossRef]
- Tang, C.; Gu, K. Strength behaviour of polypropylene fiber reinforced cement stabilized soft soil. Chin. Civ. Eng. J. 2011, 44, 5–8. [Google Scholar] [CrossRef]
- Sobhan, K.; Mashnad, M. Mechanical stabilization of cemented soil–fly ash mixtures with recycled plastic strips. J. Environ. Eng. 2003, 129, 943–947. [Google Scholar] [CrossRef]
- Tang, C.S.; Shi, B.; Zhao, L.Z. Interfacial shear strength of fiber reinforced soil. Geotext. Geomembr. 2010, 28, 54–62. [Google Scholar] [CrossRef]
- Li, G. Advanced Soil Mechanics, 2nd ed.; Tsinghua University Press: Beijing, China, 2004; pp. 50–56. [Google Scholar]
Particle Size (mm) | >10 | 10–5 | 5–2 | 2–1 | 1–0.5 | 0.5–0.25 | 0.25–0.075 | ≤0.075 |
---|---|---|---|---|---|---|---|---|
Percentage (%) | 1.13 | 10.129 | 11.234 | 27.7 | 15.613 | 13.144 | 18.188 | 2.862 |
Optimal Water Content (%) | Maximum Dry Density (g/cm3) | Maximum Porosity | Minimum Porosity | Cohesion (MPa) | Internal Friction Angle (°) | Dynamic Deformation Modulus (MPa) | Nonuniformity Coefficient | Radius of Curvature |
---|---|---|---|---|---|---|---|---|
8.5 | 2.06 | 1.004 | 0.613 | 0 | 38 | 19.23 | 10.89 | 1.02 |
Fiber Type | Density (g/cm3) | Diameter (μm) | Melting Point (°C) | Flash Point (°C) | Elongation at Break (%) | Modulus of Elasticity (GPa) | Tensile Strength (MPa) |
---|---|---|---|---|---|---|---|
Monofilament Y-type | 0.91 | 31 | 165–170 | 590 | 30 | ≥3.5 | ≥350 |
Soil Type | Confining Pressure (MPa) | Fiber Content (%) | Fiber Length (mm) | Test Number |
---|---|---|---|---|
Fill/Fiber-reinforced soil | 0.1 | 0 0.1 0.2 0.3 | 12 | M1 |
M3 | ||||
M4 | ||||
M5 | ||||
0.1 | 0.2 | 0 3 9 12 18 | L1 | |
L2 | ||||
L3 | ||||
L4 | ||||
L5 | ||||
0.1 0.3 0.5 0.7 | 0.2 | 12 | WY1 | |
WY2 | ||||
WY3 | ||||
WY4 |
Test Number | Failure Stress (MPa) | Ei (MPa) | (σ1−σ3)ult (MPa) | R2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
M1 | 0.386 1 | 73.900 | 0.500 | 0.99 | ||||||
0.403 2 | 0.382 | 0.373 | 74.059 | 73.344 | 74.297 | 0.496 | 0.516 | 0.488 | ||
M3 | 0.435 | 85.409 | 0.697 | 0.99 | ||||||
0.471 | 0.417 | 0.418 | 83.085 | 83.933 | 89.210 | 0.691 | 0.704 | 0.695 | ||
M4 | 0.513 | 89.249 | 0.747 | 0.99 | ||||||
0.513 | 0.525 | 0.501 | 88.663 | 88.188 | 90.895 | 0.748 | 0.759 | 0.735 | ||
M5 | 0.449 | 83.012 | 0.659 | 0.99 | ||||||
0.455 | 0.445 | 0.447 | 81.611 | 82.571 | 84.855 | 0.658 | 0.667 | 0.652 | ||
L1 | 0.386 | 77.254 | 0.572 | 0.99 | ||||||
0.363 | 0.394 | 0.400 | 78.446 | 76.792 | 76.525 | 0.555 | 0.573 | 0.589 | ||
L2 | 0.427 | 81.000 | 0.599 | 0.99 | ||||||
0.416 | 0.422 | 0.443 | 80.905 | 82.077 | 80.018 | 0.598 | 0.585 | 0.614 | ||
L3 | 0.452 | 88.657 | 0.705 | 0.99 | ||||||
0.447 | 0.449 | 0.459 | 87.916 | 90.329 | 87.725 | 0.729 | 0.694 | 0.691 | ||
L4 | 0.513 | 89.249 | 0.747 | 0.99 | ||||||
0.513 | 0.525 | 0.501 | 88.663 | 88.188 | 90.895 | 0.748 | 0.759 | 0.735 | ||
L5 | 0.459 | 81.618 | 0.668 | 0.99 | ||||||
0.443 | 0.472 | 0.462 | 80.181 | 84.357 | 80.317 | 0.667 | 0.676 | 0.659 | ||
WY1 | 0.513 | 89.249 | 0.747 | 0.98 | ||||||
0.513 | 0.525 | 0.501 | 88.663 | 88.188 | 90.895 | 0.748 | 0.759 | 0.735 | ||
WY2 | 1.535 | 166.945 | 1.595 | 0.99 | ||||||
1.477 | 1.507 | 1.622 | 165.531 | 169.598 | 165.705 | 1.549 | 1.581 | 1.656 | ||
WY3 | 2.011 | 205.268 | 2.116 | 0.98 | ||||||
2.122 | 1.945 | 1.966 | 217.153 | 206.370 | 192.281 | 2.032 | 2.167 | 2.149 | ||
WY4 | 2.612 | 268.169 | 2.793 | 0.97 | ||||||
2.603 | 2.691 | 2.543 | 256.913 | 289.304 | 258.290 | 2.648 | 2.772 | 2.959 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Ling, X.; Gong, W.; Li, P.; Li, G.; Wang, L. Mechanical Properties of Fiber-Reinforced Soil under Triaxial Compression and Parameter Determination Based on the Duncan-Chang Model. Appl. Sci. 2020, 10, 9043. https://doi.org/10.3390/app10249043
Zhao Y, Ling X, Gong W, Li P, Li G, Wang L. Mechanical Properties of Fiber-Reinforced Soil under Triaxial Compression and Parameter Determination Based on the Duncan-Chang Model. Applied Sciences. 2020; 10(24):9043. https://doi.org/10.3390/app10249043
Chicago/Turabian StyleZhao, Yingying, Xianzhang Ling, Weigong Gong, Peng Li, Guoyu Li, and Lina Wang. 2020. "Mechanical Properties of Fiber-Reinforced Soil under Triaxial Compression and Parameter Determination Based on the Duncan-Chang Model" Applied Sciences 10, no. 24: 9043. https://doi.org/10.3390/app10249043
APA StyleZhao, Y., Ling, X., Gong, W., Li, P., Li, G., & Wang, L. (2020). Mechanical Properties of Fiber-Reinforced Soil under Triaxial Compression and Parameter Determination Based on the Duncan-Chang Model. Applied Sciences, 10(24), 9043. https://doi.org/10.3390/app10249043