Sulfate Resistance in Cements Bearing Bottom Ash from Biomass-Fired Electric Power Plants
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Blends
2.3. Method
2.4. Instrumental Techniques
3. Results and Discussion
3.1. Mechanical Properties
3.2. Sulfate Resistance
3.3. Pore Structure
3.4. Soaking-Induced Mass and Size Changes
3.5. Composition and Microstrutural Analysis
4. Conclusions
- -
- BA-bearing paste cement resistance to sulfate attack rises with the replacement ratio. In the 180 days materials containing 20 wt% of the addition, resistance was 6.7% higher than in the OPC of the same age.
- -
- Because the cement pastes studied, irrespective of replacement ratio, exhibited a 56 days Köch–Steinegger corrosion index of >0.70, they may be deemed sulfate resistant at the concentrations and other experimental conditions established in this study.
- -
- The weight and volume gains induced by sulfate soaking were lower in OPC + 20 BA than in OPC pastes, the former by 20.5% and the latter by 28.5%.
- -
- The microcracking observed in the pastes analyzed is attributable to the expansive properties of the products of sulfate attack.
- -
- Sulfate and sodium ingress into the paste microstructure translates primarily into inside-pore ettringite formation and gypsum plate precipitation, densifying the cementitious matrix.
- -
- Gypsum and ettringite form primarily within the pore system, inducing its refinement.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, D.; Wu, K.; Shi, H.; Miramini, S.; Zhang, L. Deformation behaviour of concrete materials under the sulfate attack. Constr. Build. Mater. 2019, 210, 232–241. [Google Scholar] [CrossRef]
- Ragoug, R.; Omikrine-Metalssi, O.; Torrenti, J.M.; Barberon, F.; Divet, L.; Roussel, N. External Sulfate Attack-Influence of an Early Age Exposure, Coupling with the Cement Composition; LNEC: Lisbon, Portugal; RILEM: Lisbon, Portugal, 2016; pp. 57–68. [Google Scholar]
- Zhang, Z.; Zhou, J.; Yang, J.; Zou, Y.; Wang, Z. Understanding of the deterioration characteristic of concrete exposed to external sulfate attack: Insight into mesoscopic pore structures. Constr. Build. Mater. 2020, 260, 119932. [Google Scholar] [CrossRef]
- Ikumi, T.; Segura, I. Numerical assessment of external sulfate attack in concrete structures. A review. Cem. Concr. Res. 2019, 121, 91–105. [Google Scholar] [CrossRef]
- De Souza, D.J.; Medeiros, M.H.F.; Filho, J.H. Evaluation of external sulfate attack (Na2SO4 and MgSO4): Portland cement mortars containing siliceous supplementary cementitious materials. Rev. IBRACON Estrut. Mater. 2020, 13, e13403. [Google Scholar] [CrossRef]
- Müllauer, W.; Beddoe, R.E.; Heinz, D. Sulfate Attack on Concrete-Solution Concentration and Phase Stability; RILEM: Tolouse, France, 2009; pp. 18–27. [Google Scholar]
- Juenger, M.C.; Siddique, R. Recent advances in understanding the role of supplementary cementitious materials in concrete. Cem. Concr. Res. 2015, 78, 71–80. [Google Scholar] [CrossRef]
- Kumar Metha, P.; Monteiro, P.J.M. CONCRETE: Microstructure, Properties and Materials, 3rd ed.; McGraw-Hill: New York, NY, USA, 2006; p. 659. [Google Scholar]
- Whittaker, M.; Black, L. Current knowledge of external sulfate attack. Adv. Cem. Res. 2015, 27, 532–545. [Google Scholar] [CrossRef]
- Sanjuán, M.A.; Andrade, C.; Mora, P.; Zaragoza, A. Carbon Dioxide Uptake by Cement-Based Materials: A Spanish Case Study. Appl. Sci. 2020, 10, 339. [Google Scholar] [CrossRef]
- Martirena, F.; Monzó, J. Vegetable ashes as Supplementary Cementitious Materials. Cem. Concr. Res. 2018, 114, 57–64. [Google Scholar] [CrossRef]
- Medina, C.; Del Bosque, I.F.S.; Frías, M.; De Rojas, M.S. Design and characterisation of ternary cements containing rice husk ash and fly ash. Constr. Build. Mater. 2018, 187, 65–76. [Google Scholar] [CrossRef]
- Frías, M.; Savastano, H.; Villar, E.; De Rojas, M.I.S.; Santos, S. Characterization and properties of blended cement matrices containing activated bamboo leaf wastes. Cem. Concr. Compos. 2012, 34, 1019–1023. [Google Scholar] [CrossRef]
- González-Kunz, R.N.; Pineda, P.; Bras, A.; Morillas, L. Plant biomass ashes in cement-based building materials. Feasibility as eco-efficient structural mortars and grouts. Sustain. Cities Soc. 2017, 31, 151–172. [Google Scholar] [CrossRef]
- Rajamma, R.; Senff, L.; Ribeiro, M.; Labrincha, J.; Ball, R.J.; Allen, G.; Ferreira, V.M. Biomass fly ash effect on fresh and hardened state properties of cement based materials. Compos. Part B Eng. 2015, 77, 1–9. [Google Scholar] [CrossRef]
- Ohenoja, K.; Wigren, V.; Österbacka, J.; Illikainen, M. Mechanically Treated Fly Ash from Fluidized Bed Combustion of Peat, Wood, and Wastes in Concrete. Waste Biomass Valorization 2019, 11, 3071–3079. [Google Scholar] [CrossRef]
- del Bosque, I.F.S.; de Rojas, M.I.S.; Asensio, E.; Frías, M.; Medina, C. Modelling the interfacial transition zone (ITZ) between recycled aggregates and industrial waste in cementitious matrix. In Waste and By-Products in Cement-Based Materials; De Brito, J., Thomas, C., Medina, C., Agrela, F., Eds.; Woodhead Publishing: Sawston, UK, 2021. [Google Scholar]
- Carević, I.; Baričević, A.; Štirmer, N.; Šantek, B.J. Correlation between physical and chemical properties of wood biomass ash and cement composites performances. Constr. Build. Mater. 2020, 256, 119450. [Google Scholar] [CrossRef]
- Medina, J.; Del Bosque, I.S.; Frías, M.; De Rojas, M.S.; Medina, C. Design and properties of eco-friendly binary mortars containing ash from biomass-fuelled power plants. Cem. Concr. Compos. 2019, 104, 103372. [Google Scholar] [CrossRef]
- De Brito, J.; Argela, F. Biomass fly ash and biomass bottom ash. In New Trends in Eco-Efficient and Recycled Concrete; Argela, F., Cabrela, M., Morales, M., Zamorano, M., Alshaaer, M., Eds.; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 23–58. [Google Scholar]
- Teixeira, E.; Camões, A.; Branco, F. Valorisation of wood fly ash on concrete. Resour. Conserv. Recycl. 2019, 145, 292–310. [Google Scholar] [CrossRef]
- Medina, J.; Del Bosque, I.S.; Frías, M.; De Rojas, M.S.; Medina, C. Durability of new blended cements additioned with recycled biomass bottom ASH from electric power plants. Constr. Build. Mater. 2019, 225, 429–440. [Google Scholar] [CrossRef]
- Modolo, R.C.E.; Senff, L.; Ferreira, V.M.; Tarelho, L.A.C.; Moraes, C.A.M. Fly ash from biomass combustion as replacement raw material and its influence on the mortars durability. J. Mater. Cycles Waste Manag. 2017, 20, 1006–1015. [Google Scholar] [CrossRef]
- Medina, J.M.; del Bosque, I.F.S.; Frías, M.; De Rojas, M.I.S.; Medina, C. Characterisation and valorisation of biomass waste as a possible addition in eco-cement design. Mater. Struct. 2017, 50, 207. [Google Scholar] [CrossRef]
- Del Bosque, I.F.S.; Medina, J.; Frías, M.; De Rojas, M.S.; Medina, C. Use of biomass-fired power plant bottom ash as an addition in new blended cements: Effect on the structure of the C-S-H gel formed during hydration. Constr. Build. Mater. 2019, 228, 117081. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash. Fuel 2013, 105, 19–39. [Google Scholar] [CrossRef]
- Composition, Specifications and Conformity Criteria for Common Cements; EN 197-Cement; European Committee for Standardization: Brussels, Belgium, 2011.
- Koch, A.; Steinegger, U. A rapid test for cements for their behaviour under sulphate attack. Zem. Kalk Gips 1960, 7, 317–324. [Google Scholar]
- Medina, G.; Del Bosque, I.F.S.; Frias, M.; De Rojas, M.I.S.; Medina, C. Sulfate Resistance in Cements Bearing Ornamental Granite Industry Sludge. Materials 2020, 13, 4081. [Google Scholar] [CrossRef]
- Irassar, E.F. Sulfate resistance of blended cement: Prediction and relation with flexural strength. Cem. Concr. Res. 1990, 20, 209–218. [Google Scholar] [CrossRef]
- Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry; D 4404-84; ASTM International: West Conshohocken, PA, USA, 2004. [CrossRef]
- De Rojas, M.; Frias, M.; Sabador, E.; Asensio, E.; Rivera, J.; Medina, C.; Julián, R. Durability and chromatic behavior in cement pastes containing ceramic industry milling and glazing by-products. J. Am. Ceram. Soc. 2018, 102, 1971–1981. [Google Scholar]
- Frias, M.; De Rojas, M.I.S.; Rodríguez, C. The influence of SiMn slag on chemical resistance of blended cement pastes. Constr. Build. Mater. 2009, 23, 1472–1475. [Google Scholar] [CrossRef]
- Goñi, S.; Frias, M.; Vegas, I.; Garcia, R. Sodium sulphate effect on the mineralogy of ternary blended cements elaborated with activated paper sludge and fly ash. Constr. Build. Mater. 2014, 54, 313–319. [Google Scholar] [CrossRef]
- De Lucas, E.A.; Medina, C.; Frias, M.; De Rojas, M. Clay-based construction and demolition waste as a pozzolanic addition in blended cements. Effect on sulfate resistance. Constr. Build. Mater. 2016, 127, 950–958. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford Publishing: London, UK, 1997. [Google Scholar]
- Liu, K.-W.; Sun, D.; Wang, A.; Zhang, G.; Tang, J. Long-Term Performance of Blended Cement Paste Containing Fly Ash against Sodium Sulfate Attack. J. Mater. Civ. Eng. 2018, 30, 04018309. [Google Scholar] [CrossRef]
- Ikumi, T.; Cavalaro, S.H.P.; Segura, I. The role of porosity in external sulphate attack. Cem. Concr. Compos. 2019, 97, 1–12. [Google Scholar] [CrossRef]
- Bassuoni, M.; Rahman, M. Response of concrete to accelerated physical salt attack exposure. Cem. Concr. Res. 2016, 79, 395–408. [Google Scholar] [CrossRef]
- Shi, Z.; Ferreiro, S.; Lothenbach, B.; Geiker, M.R.; Kunther, W.; Kaufmann, J.; Herfort, D.; Skibsted, J. Sulfate resistance of calcined clay–Limestone–Portland cements. Cem. Concr. Res. 2019, 116, 238–251. [Google Scholar] [CrossRef]
- Tixier, R.; Mobasher, B. Modeling of Damage in Cement-Based Materials Subjected to External Sulfate Attack. I: Formulation. J. Mater. Civ. Eng. 2003, 15, 305–313. [Google Scholar] [CrossRef]
- Santhanam, M.; Cohen, M.D.; Olek, J. Mechanism of sulfate attack: A fresh look: Part 2. Proposed mechanisms. Cem. Concr. Res. 2003, 33, 341–346. [Google Scholar] [CrossRef]
- Santhanam, M.; Cohen, M.D.; Olek, J. Mechanism of sulfate attack: A fresh look Part 1: Summary of experimental results. Cem. Concr. Res. 2002, 32, 915–921. [Google Scholar] [CrossRef]
- Müllauer, W.; Beddoe, R.E.; Heinz, D. Sulfate attack expansion mechanisms. Cem. Concr. Res. 2013, 52, 208–215. [Google Scholar] [CrossRef]
- Kuzel, H.-J. Initial hydration reactions and mechanisms of delayed ettringite formation in Portland cements. Cem. Concr. Compos. 1996, 18, 195–203. [Google Scholar] [CrossRef]
- Liu, K.; Deng, M.; Mo, L.; Tang, J. Deterioration mechanism of Portland cement paste subjected to sodium sulfate attack. Adv. Cem. Res. 2015, 27, 477–486. [Google Scholar] [CrossRef]
- Veiga, K.; Gastaldini, A.L.G. Sulfate attack on a white Portland cement with activated slag. Constr. Build. Mater. 2012, 34, 494–503. [Google Scholar] [CrossRef]
- Xiong, C.; Jiang, L.; Xu, Y.; Song, Z.; Chu, H.; Guo, Q.; Xiong, C.; Jiang, L.; Xu, Y.; Song, Z.; et al. Influences of exposure condition and sulfate salt type on deterioration of paste with and without fly ash. Constr. Build. Mater. 2016, 113, 951–963. [Google Scholar] [CrossRef]
- Komatsu, R.; Mizukoshi, N.; Makida, K.; Tsukamoto, K. In-situ observation of ettringite crystals. J. Cryst. Growth 2009, 311, 1005–1008. [Google Scholar] [CrossRef]
- Hewlett, P.C. Lea’s Chemistry of Cement and Concrete, 4th ed.; Elsevier: London, UK, 1998; p. 1053. [Google Scholar]
- Neville, A.M. Properties of Concrete, 1st ed.; Longman Scientific & Technical: New York, NY, USA, 2008; p. 844. [Google Scholar]
- Taylor, H.; Famy, C.; Scrivener, K. Delayed ettringite formation. Cem. Concr. Res. 2001, 31, 683–693. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, D.; De Schutter, G. Does concrete suffer sulfate salt weathering? Constr. Build. Mater. 2014, 66, 692–701. [Google Scholar] [CrossRef]






| Property | Blended Cement | EN 197-1 Requirement * | ||||
|---|---|---|---|---|---|---|
| OPC | OPC + 10BA | OPC + 20BA | ||||
| Physical | Initial setting time (min) | 135 | 204 | 264 | ≥60 | |
| Expansion (mm) | 0 | 1 | 1 | ≤10 | ||
| Mechanical | Compressive strength (MPa) | 2 days | 40.71 | 38.71 | 31.88 | ≥20.00 |
| 28 days | 68.22 | 67.84 | 58.17 | ≥42.50 | ||
| Chemical | Sulfate oxide content (%wt.) | 3.14 | 3.06 | 2.80 | ≤4.00 | |
| Chloride content (ppm) | 0.01 | 0.02 | 0.04 | ≤0.10 | ||
| Pozzolanicity * | - | - | Positive | Positive | ||
| Blended Cement | Exposure Time (Days) | |||
|---|---|---|---|---|
| 14 | 56 | 90 | 180 | |
| OPC | 1.30 | 1.26 | 1.15 | 1.11 |
| OPC + 10BA | 1.32 | 1.29 | 1.30 | 1.15 |
| OPC + 20BA | 1.29 | 1.27 | 1.37 | 1.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina, J.M.; Rojas, M.I.S.d.; Bosque, I.F.S.d.; Frías, M.; Medina, C. Sulfate Resistance in Cements Bearing Bottom Ash from Biomass-Fired Electric Power Plants. Appl. Sci. 2020, 10, 8982. https://doi.org/10.3390/app10248982
Medina JM, Rojas MISd, Bosque IFSd, Frías M, Medina C. Sulfate Resistance in Cements Bearing Bottom Ash from Biomass-Fired Electric Power Plants. Applied Sciences. 2020; 10(24):8982. https://doi.org/10.3390/app10248982
Chicago/Turabian StyleMedina, José M., María Isabel Sánchez de Rojas, Isabel F. Sáez del Bosque, Moisés Frías, and César Medina. 2020. "Sulfate Resistance in Cements Bearing Bottom Ash from Biomass-Fired Electric Power Plants" Applied Sciences 10, no. 24: 8982. https://doi.org/10.3390/app10248982
APA StyleMedina, J. M., Rojas, M. I. S. d., Bosque, I. F. S. d., Frías, M., & Medina, C. (2020). Sulfate Resistance in Cements Bearing Bottom Ash from Biomass-Fired Electric Power Plants. Applied Sciences, 10(24), 8982. https://doi.org/10.3390/app10248982

