Estimation on Embedment Length of Anchor Bolt inside Concrete Using Equation for Arrival Time and Shortest Time Path of Ultrasonic Pulse
Abstract
:1. Introduction
2. Embedded Length of Anchor Bolt inside Concrete
2.1. Problem Definition
2.2. Stabilization Using Equation Error Estimation and Regularization
3. Numerical and Experimental Verification
3.1. Numerical Verification
3.2. Experimental Verification
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ahmed, H.; La, H.M.; Gucunski, N. Review of non–destructive civil infrastructure evaluation for bridges: State–of–the–art robotic platforms, sensors and algorithms. Sensors 2020, 20, 3954. [Google Scholar] [CrossRef] [PubMed]
- Gibb, S.; La, H.M.; Le, T.; Nguyen, L.; Schmid, R.; Pham, H. Nondestructive evaluation sensor fusion with autonomous robotic system for civil infrastructure inspection. J. Field Robot. 2018, 35, 988–1004. [Google Scholar] [CrossRef]
- Gucunski, N.; Kee, S.; La, H.; Basily, B.; Maher, A. Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform. Struct. Monit. Maint. 2015, 2, 19–34. [Google Scholar] [CrossRef] [Green Version]
- La, H.M.; Gucunski, N.; Kee, S.H.; Van Nguyen, L. Data analysis and visualization for the bridge deck inspection and evaluation robotic system. Vis. Eng. 2015, 3, 1–16. [Google Scholar] [CrossRef]
- La, H.M.; Gucunski, N.; Dana, K.; Kee, S.H. Development of an autonomous bridge deck inspection robotic system. J. Field Robot. 2017, 34, 1489–1504. [Google Scholar] [CrossRef] [Green Version]
- Prasanna, P.; Dana, K.J.; Gucunski, N.; Basily, B.B.; La, H.M.; Lim, R.S.; Parvardeh, H. Automated crack detection on concrete bridges. IEEE Trans. Autom. Sci. Eng. 2014, 13, 591–599. [Google Scholar] [CrossRef]
- Kim, S.H.; Mha, H.S.; Lee, S.W. Effects of bearing damage upon seismic behaviors of a multi–span girder bridge. Eng. Struct. 2006, 28, 1071–1080. [Google Scholar] [CrossRef]
- Filipov, E.T.; Fahnestock, L.A.; Steelman, J.S.; Hajjar, J.F.; LaFave, J.M.; Foutch, D.A. Evaluation of quasi–isolated seismic bridge behavior using nonlinear bearing models. Eng. Struct. 2013, 49, 168–181. [Google Scholar] [CrossRef]
- Yakut, A.; Yura, J.A. Evaluation of low–temperature test methods for elastomeric bridge bearings. J. Bridge Eng. 2002, 7, 50–56. [Google Scholar] [CrossRef]
- Choi, E.; DesRoches, R.; Nielson, R. Seismic fragility of typical bridges in moderate seismic zones. Eng. Struct. 2004, 26, 187–199. [Google Scholar] [CrossRef]
- Xu, C.; Heping, C.; Bin, L.; Fangfang, Z. Modeling of anchor bolt pullout in concrete based on a heterogeneous assumption. Nucl. Eng. Des. 2011, 241, 1345–1351. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Y.; Muhammad, H.; Chen, Z.; Xiao, Y.; Ye, B. 3D analysis of anchor bolt pullout in concrete materials using the non–ordinary state–based peridynamics. Eng. Fract. Mech. 2019, 207, 68–85. [Google Scholar] [CrossRef]
- Pitrakkos, T.; Tizani, W. Experimental behaviour of a novel anchored blind–bolt in tension. Eng. Struct. 2013, 49, 905–919. [Google Scholar] [CrossRef]
- Korea Institute of Civil Engineering and Building Technology (KICT). Development of Safety Improvement Technology for Bridge Weak Connection and Seismic Equipment to Secure Evacuation and Recovery Route in Earthquake; KICT 2019–043 Technical Report; KICT: Goyang-si, Korea, 2019. [Google Scholar]
- Hashimoto, J.; Takiguchi, K. Experimental study on pullout strength of anchor bolt with an embedment depth of 30 mm in concrete under high temperature. Nucl. Eng. Des. 2004, 229, 151–163. [Google Scholar] [CrossRef]
- Shirvani, M.; Klingner, R.E.; Graves, H.L. Breakout capacity of anchors in concrete part 1: Tension. ACI Struct. J. 2004, 101, 812–820. [Google Scholar]
- Lee, N.H.; Kim, K.S.; Chang, J.B.; Park, K.R. Tensile–headed anchors with large diameter and deep embedment in concrete. ACI Struct. J. 2007, 104, 479–486. [Google Scholar]
- Petersen, D.; Zhao, J. Design of anchor reinforcement for seismic shear loads. ACI Struct. J. 2013, 110, 53–62. [Google Scholar]
- McCann, D.M.; Forde, M.C. Review of NDT methods in the assessment of concrete and masonry structures. NDT E Int. 2001, 34, 71–84. [Google Scholar] [CrossRef]
- Oh, T.; Kee, S.H.; Arndt, R.W.; Popovics, J.S.; Zhu, J. Comparison of NDT methods for assessment of a concrete bridge deck. J. Eng. Mech. 2013, 139, 305–314. [Google Scholar] [CrossRef]
- Drinkwater, B.W.; Wilcox, P.D. Ultrasonic arrays for non–destructive evaluation: A review. NDT E Int. 2006, 39, 525–541. [Google Scholar] [CrossRef]
- Demirboğa, R.; Türkmen, İ.; Karakoc, M.B. Relationship between ultrasonic velocity and compressive strength for high–volume mineral–admixtured concrete. Cem. Concr. Res. 2004, 34, 2329–2336. [Google Scholar] [CrossRef]
- Yeih, W.; Huang, R. Detection of the corrosion damage in reinforced concrete members by ultrasonic testing. Cem. Concr. Res. 1998, 28, 1071–1083. [Google Scholar] [CrossRef]
- Watanabe, T.; Trang, H.T.H.; Harada, K.; Hashimoto, C. Evaluation of corrosion–induced crack and rebar corrosion by ultrasonic testing. Constr. Build. Mater. 2014, 67, 197–201. [Google Scholar] [CrossRef]
- Climent, M.Á.; Miró, M.; Carbajo, J.; Poveda, P.; de Vera, G.; Ramis, J. Use of non–linear ultrasonic techniques to detect cracks due to steel corrosion in reinforced concrete structures. Materials 2019, 12, 813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beard, M.D.; Lowe, M.J.S. Non–destructive testing of rock bolts using guided ultrasonic waves. Int. J. Rock Mech. Min. Sci. 2003, 40, 527–536. [Google Scholar] [CrossRef]
- Chaki, S.; Bourse, G. Guided ultrasonic waves for non–destructive monitoring of the stress levels in prestressed steel strands. Ultrasonics 2009, 49, 162–171. [Google Scholar] [CrossRef]
- Rizzo, P.; Han, J.G.; Ni, X.L. Structural health monitoring of immersed structures by means of guided ultrasonic waves. J. Intell. Mater. Syst. Struct. 2010, 21, 1397–1407. [Google Scholar] [CrossRef]
- Zielińska, M.; Rucka, M. Detection of debonding in reinforced concrete beams using ultrasonic transmission tomography and hybrid ray tracing technique. Constr. Build. Mater. 2020, 262, 120104. [Google Scholar] [CrossRef]
- Wilcox, P.; Lowe, M.; Cawley, P. The effect of dispersion on long–range inspection using ultrasonic guided waves. NDT E Int. 2001, 34, 1–9. [Google Scholar] [CrossRef]
- Abbas, M.; Shafiee, M. Structural health monitoring (SHM) and determination of surface defects in large metallic structures using ultrasonic guided waves. Sensors 2018, 18, 3958. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Zhang, B.; Song, G.; Lin, J. PZT–based ultrasonic guided wave frequency dispersion characteristics of tubular structures for different interfacial boundaries. Sensors 2018, 18, 4111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robeyst, N.; Gruyaert, E.; Grosse, C.U.; De Belie, N. Monitoring the setting of concrete containing blast–furnace slag by measuring the ultrasonic p–wave velocity. Cem. Concr. Res. 2008, 38, 1169–1176. [Google Scholar] [CrossRef]
- Krautkrämer, J.; Krautkrämer, H. Ultrasonic Testing of Materials; Springer Science & Business Media: Berlin, Germany, 1990. [Google Scholar]
- Park, K.-Y.; Lee, H.S. Formulation of equation error estimator using measured displacement De–noised by temporal–spatial filter for system identification of elastic solids. Inverse Probl. Sci. Eng. 2020, 28, 1423–1452. [Google Scholar] [CrossRef]
- Solis–Carcaño, R.; Moreno, E.I. Evaluation of concrete made with crushed limestone aggregate based on ultrasonic pulse velocity. Constr. Build. Mater. 2008, 22, 1225–1231. [Google Scholar] [CrossRef]
- Rao, S.K.; Sravana, P.; Rao, T.C. Experimental studies in Ultrasonic Pulse Velocity of roller compacted concrete pavement containing fly ash and M–sand. Int. J. Pavement Res. Technol. 2016, 9, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Palanichamy, P.; Vasudevan, M.; Jayakumar, T.; Venugopal, S.; Raj, B. Ultrasonic velocity measurements for characterizing the annealing behaviour of cold worked austenitic stainless steel. NDT E Int. 2000, 33, 253–259. [Google Scholar] [CrossRef]
- Gür, C.H.; Cam, I. Comparison of magnetic Barkhausen noise and ultrasonic velocity measurements for microstructure evaluation of SAE 1040 and SAE 4140 steels. Mater. Charact. 2007, 58, 447–454. [Google Scholar] [CrossRef]
- Kang, J.S.; Park, S.-K.; Shin, S.; Lee, H.S. Structural system identification in time domain using measured acceleration. J. Sound Vib. 2005, 22, 215–234. [Google Scholar] [CrossRef]
- ASTM C618–15. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Molero, M.; Segura, I.; Hernández, M.G.; Izquierdo, M.A.G.; Anaya, J.J. Ultrasonic wave propagation in cementitious materials: A multiphase approach of the self–consistent multiple scattering model. Ultrasonics 2011, 51, 71–84. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Kim, T.; Castel, A. Mitigation of alkali–silica reaction by limestone calcined clay cement (LC3). Cem. Concr. Res. 2020, 137, 106176. [Google Scholar] [CrossRef]
- Song, C.; Hong, G.; Choi, S. Modeling autogenous shrinkage of hydrating cement paste by estimating the meniscus radius. Constr. Build. Mater. 2020, 257, 119521. [Google Scholar] [CrossRef]
Embedment Depth (mm) | ||||
---|---|---|---|---|
100 | 200 | 300 | ||
Cover Thickness (mm) | 100 | E100C100 | E200C100 | E300C100 |
200 | E100C200 | E200C200 | E300C200 |
Specimen ID | Numerical Verification (with 3% White Noise) | |
---|---|---|
Estimated Value (mm) | Error (%) | |
E100C100 | 100.1 | 0.1 |
E200C100 | 202.2 | 1.1 |
E300C100 | 298.4 | 0.5 |
E100C200 | 102.9 | 2.9 |
E200C200 | 199.9 | 0.0 |
E300C200 | 315.9 | 5.3 |
Mixture Proportion (kg/m3) | Fresh Concrete | Hardened Concrete | |||||||
---|---|---|---|---|---|---|---|---|---|
Binder | Water | Fine Agg. | Coarse Agg. | SP | Slump (mm) | Air Content (%) | Compressive Strength ** (MPa) | ||
Cement | Fly Ash | GGBFS * | |||||||
255 | 56 | 94 | 167 | 827 | 932 | 3 | 150 | 4.5 | 27 |
Specimen ID | Experimental Verification | |
---|---|---|
Estimated Value (mm) | Error (%) | |
E100C100 | 92.7 | 7.3 |
E200C100 | 173.0 | 13.5 |
E300C100 | 255.4 | 14.9 |
E100C200 | 74.4 | 25.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.; Kim, Y.J.; Cho, C.B.; Chin, W.J.; Park, K.-Y. Estimation on Embedment Length of Anchor Bolt inside Concrete Using Equation for Arrival Time and Shortest Time Path of Ultrasonic Pulse. Appl. Sci. 2020, 10, 8848. https://doi.org/10.3390/app10248848
Song C, Kim YJ, Cho CB, Chin WJ, Park K-Y. Estimation on Embedment Length of Anchor Bolt inside Concrete Using Equation for Arrival Time and Shortest Time Path of Ultrasonic Pulse. Applied Sciences. 2020; 10(24):8848. https://doi.org/10.3390/app10248848
Chicago/Turabian StyleSong, Chiwon, Young Jin Kim, Chang Beck Cho, Won Jong Chin, and Kwang-Yeun Park. 2020. "Estimation on Embedment Length of Anchor Bolt inside Concrete Using Equation for Arrival Time and Shortest Time Path of Ultrasonic Pulse" Applied Sciences 10, no. 24: 8848. https://doi.org/10.3390/app10248848
APA StyleSong, C., Kim, Y. J., Cho, C. B., Chin, W. J., & Park, K.-Y. (2020). Estimation on Embedment Length of Anchor Bolt inside Concrete Using Equation for Arrival Time and Shortest Time Path of Ultrasonic Pulse. Applied Sciences, 10(24), 8848. https://doi.org/10.3390/app10248848