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Abstract: For tubular structures, ultrasonic guided waves (UGWs) which are closely related to
interfacial boundary conditions such as gas, liquid and solid materials, are usually used in damage
detection. Due to the different phase materials inside tubes, the interfacial boundary (connection)
conditions are variable, which has a great influence on the dispersion-related UGW propagation
characteristics. However, most UGW-based damage detection methods only consider the pipeline
structures as hollow tubes, ignoring the interfacial boundary condition influences on the UGW
propagation. Based on the UGW theory, this paper aims to propose a novel method for describing the
UGW propagation characteristics for different interfaces, and lay a foundation for the UGW-based
tubular structure damage detection. Based on the Navier’s equation of motion and combined with
interfacial boundary conditions and coordinate conditions, the dispersion equations for a hollow steel
tube, a tube filled with liquid, and a concrete filled steel tube (CFST) were established, respectively.
Under the given conditions of both materials and geometric parameters, the transcendental dispersion
equations were established and solved by using a numerical method. The UGW propagation
characteristics in different interfaces were classified and discussed, and the dispersion curves of
both group and phase velocities are drawn. To validate the efficiency of theoretical and numerical
results, three kinds of model tubular structure experiments filled in air (hollow), water and concrete,
respectively, were performed based on lead zirconate titanate (PZT) transducer UGWs. The results
showed that the UGWs propagation in different interfaces has the dispersion and multi-modes
characters, which are not only related to the product of frequency and thickness, but also to the
internal dielectric material parameters and interfacial boundary conditions.

Keywords: tubular structures; longitudinal ultrasonic guided waves (UGWs); dispersion characteristics;
interfacial boundary conditions; product of frequency and thickness; interfacial debonding damage;
PZT-based transducers

1. Introduction

Tubular structures are widely used in bridges, underground pipes, pipelines and high-rise
buildings, etc. Due to environmental impacts, material aging effects and overloading, these tubular
structures may experience various forms of interfacial damage during the construction and service
phase, and their whole lifespan reliability might be reduced to a certain extent. Therefore, it is
necessary to monitor or identify the interfacial defects such as debonding in tubular structures by
using non-destructive testing (NDT) methods [1–4].

The existing damage detection (DD) and structural health monitoring (SHM) methods are
usually classified into artificial percussion methods, ultrasound-based methods, optical fiber-based

Sensors 2018, 18, 4111; doi:10.3390/s18124111 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5939-0718
https://orcid.org/0000-0001-5135-5555
http://www.mdpi.com/1424-8220/18/12/4111?type=check_update&version=1
http://dx.doi.org/10.3390/s18124111
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 4111 2 of 21

methods and so on. However, these technologies usually need to be used for examining the monitored
tubular structure point by point, which is time-consuming, laborious and cumbersome during the
detection process. The ultrasonic guided wave (UGW)-based detection technology can overcome
those disadvantages with its many advantages, such as high efficiency, high speed and wide range
of detection, and has been widely used in structural defect detection [5]. As the wave is traveling
back and forth between the interfaces that make up the waveguide, the round-trip wave produces
a complex waveform and interferences. If the guided wave propagates over an infinite plate or a pipe
at two parallel interfaces, it will travel along the plate or pipe surface. Therefore, as the guided wave
propagates through a cylindrical shell, a rod and a layered elastic body, it will generally propagate
along their axial directions. Therefore, flat plates and cylindrical shells, rods and laminated elastic
bodies are typical waveguides for guided wave propagations [6,7]. Because of the multi-modes
and frequency dispersion characteristics of an UGW, it becomes very complicated during excitation,
propagation and reception. In order to make a better use of UGWs to detect damages in structures,
a proper mode and frequency of the guided wave should be firstly selected and applied in DDs
and SHMs. The dispersion curves which show the relationship between group or phase velocities
and frequencies for UGWs have become an important reference, and this becomes a prerequisite for
the use of UGWs in a test or engineering. Especially, as the time of flight (ToF) method is used for
defects localization, the frequency dispersive characteristics of the selected UGW is quite dominated
for evaluating the guided wave group (or phase) velocity. Based on the UGW theory, this paper aims
to propose a novel method for describing the UGW propagation characteristics in different interfaces,
and lay a foundation for the UGW-based tubular structure damage detection or health monitoring.

Research into guided waves and their applications in engineering has a long history and has
produced plenty of fruitful research. The objective of an investigation on guided waves can be classified
into four stages, which are the stages of plate structures with free boundary, hollow cylindrical shells,
multi-layer composite pipelines, and composite structures such as concrete filled steel tubes (CFST).
The research results have covered from simple issues to complicated ones.

Rayleigh [8] and Lamb [9] studied the propagation properties of the elastic waves in a free state
in an isotropic elastic plate, and obtained the transcendental equation of the monolayer isotropic
elastic plate, named the Rayleigh-Lamb transcendental equation. Later, Lamb obtained the wave
equation under the free boundary condition of the plate, and obtained a special set of wave solutions,
which promoted the development of guided wave theory.

For hollow cylindrical shells, Ghosh [10] first carried on the linear solution derivation of guided
wave transmission. Then, Love [11] described a stress wave propagation analysis. Cooper and
Naghdi [12] and Naghdi and Cooper [13] used the same theory to further study and analyze the
propagation law of non-axisymmetric waves in a hollow cylindrical shell, respectively, but never
obtained a comprehensive numerical solution for the guided wave propagation in the cylindrical shell
structure. Finally, Gazis [14] on the basis of the existing results, analyzed the imperfections of the plate
and shell theory, and used the linear elasticity theory to solve the infinite long isotropic cylindrical
shell problem. Gazis [15,16] also obtained the dispersion equation of the longitudinal mode and the
torsion mode, and the dispersion curve of the multi-mode was drawn by a numerical calculation,
and the cutoff frequency of each mode was obtained according to the dispersion curve.

For a multilayer structure system, the research methods are classified as the transfer matrix
method, global matrix method, analytic method, numerical analysis method and semi-analytical finite
element method, etc. Lowe [17,18] used the transfer matrix method to establish the dispersion equation
of Lamb wave in a multilayer plate, then, he deduced the dispersion equation of the guided wave
in the layered cylinder. Markus et al. [19], and Yuan and Hsieh [20] used the analytical method to
study the propagation characteristics of the wave in the free composite cylindrical shell. Xi et al. [21]
studied the wave propagation characteristics in evacuated composite cylindrical shells and liquid filled
composite cylindrical shells by a semi-analytical method. Huang et al. [22] studied the dispersion
characteristics of waves in composite cylindrical shells by a numerical dispersion method. Based on
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axisymmetric guided waves, Du et al. [23] analyzed the differences between the interface changes,
and explored the dispersion equations of cylindrical composite structures, and obtained the dispersion
equation of a weakly confined interface double layer cylindrical structure in the interface spring model.
In addition, experiments were carried out on the double layered composite cylindrical structure.
The double layered composite rods are filled with liquid with the inner layer free interface and zero
inner radius, obtaining the phase velocity which is an effective factor of interface characteristics of low
order guided waves.

The mechanism for guided wave propagation in multilayer composite cylindrical structures can
be extended into composite structures. For example, Xu et al. [24] showed that guided waves can
be applied in concrete filled steel tubular structures to detect damages such as interfacial debonding
between concrete and steel pipe, and the filled concrete can be considered as a boundary of the
steel pipe.

So far, the propagation characteristics of UGWs in tubular structures filled with air (hollow) or
liquid have been extensively studied and applied in damage detection. The current challenging issue
is that the characteristics of UWGs propagating in different interfaces have not been systematically
studied and applied in engineering. A systematic and effective method for detecting interface damage
using UWGs is actually required. However, one of challenges for DDs and SHMs using UGWs is the
frequency dispersion influence, especially considering boundary conditions, on the UGW propagation
which makes it much complicated and reduces the precision of DD and SHM evaluations. Therefore,
this paper takes the tubular structures as the research objective, and numerical analysis is used to
solve the dispersion equation of the guided wave in the tubular structures with different interfacial
boundary conditions. Then, the MATLAB software is applied to analyze and draw the group velocity
and phase velocity dispersion curves. The developed frequency dispersion curves are finally validated
by an experiment. This paper also simulates the interface debonding by setting the artificial damage,
the appropriate actuation frequency is selected according to the dispersion curve, and the damage
is identified by the signal energy method. The feasibility of using the energy method to detect the
interface damage is verified, which can lay a foundation for the detection of interface damage of
tubular structures by using UGWs.

2. Dispersion Equations for Tubular Structures and Solution

2.1. Dispersion Equations for Tubular Structures

2.1.1. For Hollow Tubular Structures

Figure 1 is the tubular structural model. It is assumed that the z direction is infinite,
according to the elastic mechanics theory, when the guided waves are propagating in the structure,
the displacements of the particles must satisfy the Navier wave equations of motion [14,25], as shown
in Equation (1). According to the wave equation, the displacement and stress expressions of the guided
wave in the inner material and the outer steel tube are established, respectively. The displacement
and stress relations of the adjacent layers are established by using boundary conditions and interfacial
coordinate conditions. Meanwhile, the dispersion equation in tubular structures with different
boundary conditions is obtained by the above equations:

µ∇2U + (λ + µ)∇(∇ ·U) = ρ
∂2U
∂t2 (1)

in which, U is displacement; t is travel time; µ and λ is Lame constants of materials; ρ is density of
material.∇ is Laplace operator.
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Figure 1. The schematic of a cylindrical guided wave in a tubular structure. 
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Figure 1. The schematic of a cylindrical guided wave in a tubular structure.

When there is no external force, the displacement vector U can be decomposed into an expression
of an expansion scalar potential function ϕ and an equal volume vector potential function H according
to the Helmholtz decomposition law, as shown in Equation (2):

U = ∇ϕ +∇× H (2)

in which, ∇ · H = 0.
For Equation (2), the potential function φ and H should be satisfied:

cL
2∇2 ϕ =

∂2 ϕ

∂t2 (3)

cT
2∇2H =

∂2H
∂t2 (4)

in which, cL and cT are P-wave and S-wave velocity in elastic medium, respectively, as shown in
Equation (5):

cL =
√
(λ + 2µ)/ρ, cT =

√
µ/ρ (5)

For the propagation of guided waves in a pipe structure, Gazis [14] first studied and gave the
exact solution of this boundary condition:

ϕ = f (r) cos nθ cos(ωt + kz)
Hr = gr(r) sin nθ sin(ωt + kz)
Hθ = gθ(r) cos nθ sin(ωt + kz)
Hz = gz(r) sin nθ cos(ωt + kz)

(6)

in which, subscripts r, θ and z are radial, circumferential and axial, respectively. Substituting
Equation (6) into Equations (3) and (4):

(∇2 + ω2

cL
2 )ϕ = 0

(∇2 + ω2

cT
2 )Hz = 0

(∇2 − 1
r2 +

ω2

cL
2 )Hθ +

2
r2

∂Hθ
∂θ = 0

(∇2 − 1
r2 +

ω2

cT
2 )Hr − 2

r2
∂Hr
∂θ = 0

(7)

Introducing differential operators:

Bn,x =

[
∂2

∂x2 +
1
x
· ∂

∂x
−
(

n2

x2 − 1
)]



Sensors 2018, 18, 4111 5 of 21

Obtaining Equation (8): 
Bn,αr[ f ] = 0
Bn,βr[g3] = 0
Bn+1,βr[gr − gθ ] = 0
Bn−1,βr[gr + gθ ] = 0

(8)

in which:

α(m)2
=

ω2

c(m)2

L

− k2, β(m)2
=

ω2

c(m)2

T

− k2 (9)

The general solution of Equation (8) can be found by the Bessel function:
fm = Am · Zn(αm · r) + BmWn(αm · r)
gm = Cm · Zn+1(βm · r) + DmWn+1(βm · r)
gm+2 = Em · Zn(βm · r) + FmWn(βm · r)

(10)

in which, Zn represents Bessel functions J and Y; Wn denotes modified Bessel functions I and K; m is
the number of pipeline structure layers.

When g2 = 0:
gr = gθ = g1 (11)

The solution of the displacement field is:
um

r =
[

f ′ +
( n

r
)

gm+2 + kgm
]

cos nθ cos(ωt + kz)
um

θ =
[
−
( n

r
)

fm + kgm − gm+2
′] sin nθ cos(ωt + kz)

um
z =

[
−k fm + (n + 1)

( gm
r
)
− gm+2

′] cos nθ sin(ωt + kz)
(12)

in which, µr, µθ and µz are radial component, circumferential component and axial
component in displacement field, respectively. According to the knowledge of elastic mechanics,
the strain-displacement relation can be obtained, as shown in Equation (13):

εm
rr = ∂um

r /∂r
εm

rz = (1/2)(∂um
r /∂z + ∂um

z /∂r)
εm

rθ = (1/2)
[
r ∂

∂r

(
um

θ
r

)
+ 1

r
∂um

r
∂θ

] (13)

The stress-strain relationship is: 
σm

rr = λm∆ + 2µmεm
rr

σm
rz = 2µmεm

rz
σm

rθ = 2µmεm
rθ

(14)

in which, ∆ represents the volume expansion ratio:

∆ = ∇2 ϕ = −(α(m)2 + k2) f cos nθ cos(ωt + kz) (15)

Simultaneous Equations (12)–(15), the stress component of the stress field can then be obtained:

σm
rr =

{
−λm(α(m)2 + k2) fm + 2µm[ fm ′′ +

n
r (gm+2

′ − gm+2
r ) + kgm

′]
}

cos nθ cos(ωt + kz)

σm
rθ = µm[− 2n

r ( fm
′ − fm

r )− (2g′′m+2 + β(m)2gm+2)− k( n+1
r gm − g′m)] sin nθ cos(ωt + kz)

σrz = µm

{
−2k fm

′ − n
r g′m + n

r (
n+1

r − β(m)2 + k2)gm − nk
r gm+2

}
cos nθ sin(ωt + kz)

(16)
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When the inside of the pipe is air, the stress on the inner and outer surfaces should meet the
following boundary conditions:

σrr|r=a,b = 0, σrz|r=a,b = 0, σrθ |r=a,b = 0, (17)

Substituting Equation (16) into the boundary condition Equation (17), then:

[cij]6×6[A B A1 B1 A2 B2]T = [0 0 0 0 0 0]T (18)

In order to make the Equation (18) have a non-zero solution, the coefficient determinant must
be zero:

| cij | = 0 (i, j = 1 . . . 6) (19)

Equation (19) is the dispersion equation of the UGWs in the hollow tubular.

2.1.2. For Tubular Structures Filled with Liquid

In the tube filled with liquid, the boundary condition at the outer surface of the pipe (r=b) is:{
(σrr)r=b = 0
(σrz)r=b = 0

(20)

Since the inside of the tube is filled with liquid, the inner surface of the tube is in close contact
with the liquid column in the tube, so the radial displacement and radial stress component at the
boundary between the inner surface of the tube and the liquid in the tube are continuous. For the
liquid in the tube is a non-viscous liquid, the liquid in the tube does not bear the shearing force, so the
stress component along the center line of the tube at the boundary between the inner surface of the
tube and the liquid in the tube is σrz = 0. The boundary condition at the inner surface of the tube is:

(ur)r=a = (u f
r )r=a

(σrr)r=a = (σ
f
rr)r=a

(σrz)r=a = (σ
f
rz)r=a = 0

(21)

When the guided wave propagates in a non-viscous liquid cylinder, the Navier displacement
equilibrium equation is still satisfied. However, the displacement field U f can only be represented
by a scalar potential φ and there is no vector potential H. The displacement field U f is expressed
as follows:

U f = ∇φ f (22)

The condition for the Navier displacement equilibrium equation is:

(c f
L)

2
∇2φ f =

∂2φ f

∂2t

According to Gazis’ governing equations for the exact solution of this boundary value problem,
we assume:

ϕ f = f f (r) cos nθ cos(ωt + kz) (23)

Substituting Equation (23) into the Equation (22):

(∇2 +
ω2

c f
L

2
)ϕ f = 0 (24)
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By introducing a differential operator, combined with the Bessel equation and the integral
invariant property, the solution of the displacement field can be obtained as:

u f
r = ( f f )

′
cos nθ cos(ωt + kz) (25)

According to the relevant theory of elastic mechanics, the relationship between strain and
displacement can be expressed as:

ε
f
rr =

(
∂u f

r /∂r
)

(26)

The stress-strain relationship can be expressed as:

σ
f
rr = λ f ∆ + 2µ f ε

f
rr (27)

In which, ∆ represents the volume expansion ratio:

∆ = ∇2 ϕ f = −[(α f )
2
+ k2] f f cos nθ cos(ωt + kz) (28)

Simultaneous Equations (25)–(28), the stress component of the stress field can be obtained as:

σ
f
rr =

{
−λ f [(α f )

2
+ k2] f f

1 + 2µ f ( f f
1 )
′′
}

cos(nθ) cos(wt + kz) (29)

Finally giving Equation (30):

u f
r = U f

r (r) cos(nθ) cos(wt + kz) (30)

Simultaneously substituting the boundary condition Equations (20) and (21) into Equation (30):

[
dij
]

5×5

[
A B A1 B1 A2

]T
=
[

0 0 0 0 0
]T

(31)

In order to make the Equation (31) have a non-zero solution, the coefficient determinant must
be zero: ∣∣dij

∣∣ = 0 (i, j = 1, 2, 3, 4, 5) (32)

Equation (32) is the dispersion equation of the UGWs in the tube filled with liquid.

2.1.3. For Concrete Filled Tubular Structures

As shown in Figure 1, when the internal material is concrete, its outer boundary stress is zero,
and it is assumed that the coupling effect between the steel pipe and concrete is rigid, and the internal
boundary condition is described as [26]:

R1 = a σrr = σrz = 0

R2 = b

{
σrr1 = σrr2 σrz1 = σrz2

ur1 = ur2 uz1 = uz2

(33)

According to elastic mechanics theory, when guided waves are propagating in a structure,
the displacement of the particles must satisfy the Navier wave equations of motion [14,25], as shown
in Equation (1).

When there is no external force, the displacement vector U can be decomposed into an expression
of an expansion scalar potential function ϕ and an equal volume vector potential function H according
to the Helmholtz decomposition law, as shown in Equation (2), in which, ∇ · H = 0. For the
Equation (1), the potential function ϕ and H should be satisfied Equations (3) and (4).
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For the propagation of guided waves in a pipe structure, Gazis [14] first studied and gave the
exact solution of this boundary condition:

ϕ = f (r) cos nθ cos(ωt + kz)
µr = gr(r) sin nθ sin(ωt + kz)
µθ = gθ(r) cos nθ sin(ωt + kz)
µz = gz(r) sin nθ cos(ωt + kz)

(34)

in which, ω is circular frequency; k is wave number; n is circumferential order of guided waves
(0, 1, 2, 3, . . . ); µr,µθ and µz are radial component, circumferential component and axial component in
displacement field, respectively. gr(r), gθ(r) and gz(r) are displacement amplitudes of radial direction,
circumferential direction and axial direction, respectively.

Liu [26] introduced the differential operator and obtained the general solution through the Bessel
function. Combining Equation (2) and the vector algorithm in the cylindrical coordinate system,
the displacement component of the guided wave in the r and z directions in the longitudinal mode is
obtained as: {

ur =
∂ϕ
∂r −

∂Hθ
∂z = ( f ′ − ikgθ) cos(ωt + kz)

uz =
∂ϕ
∂z + 1

r
∂(rHθ)

∂z =
(
ik f + gθ

r + g′θ
)

sin(ωt + kz)
. (35)

Stress components are:{
σrr =

[
−λ
(
α2 + k2) f + 2µ

(
f ′′ − ikg′θ

)]
cos(ωt + kz)

σrz = µ
[
2ik f ′ +

(
k2 − β2)gθ

]
sin(ωt + kz)

. (36)

The Equations (35) and (36) are brought into the boundary conditions (33), producing a set of
characteristic equations: [

Mij
]
· [N] = 0 i, j = 1, 2, · · · 6 . (37)

In Equation (37), [N] = [A B A1 B1 A2 A3]
T, Mij is coefficient matrix. In order to make

Equation (37) have non-zero solution, the coefficient determinant must be zero:[
Mij
]
= 0 (38)

Then Equation (38) is the dispersion equation of longitudinal modal guided waves in concrete
filled steel tubular structures. Shown in Table 1 is the Bessel function selection principle.

Table 1. Bessel function selection principle.

Section Functions

cL<cp Zn(αr) = Jn(αr)Wn(αr) = Yn(αr) Zn(βr) = Jn(βr)Wn(βr) = Yn(βr)
cT<cp<cL Zn(αr) = In(αr)Wn(αr) = Kn(αr) Zn(βr) = Jn(βr)Wn(βr) = Yn(βr)

cp<cL Zn(αr) = In(αr)Wn(αr) = Kn(αr) Zn(βr) = In(βr)Wn(βr) = Kn(βr)

2.2. The Solution of Dispersion Equations

The frequency dispersion equation of guided waves in tubular structure members is
a transcendental equation, and it can only be solved by numerical calculation. The group velocity and
phase velocity have the following relation in guided waves [27]:

cg =
c2

p

cp − f d · dcp
d( f d)

(39)

From Equations (19), (32), (38) and (39), we can obtain the guided wave group velocity and phase
velocity dispersion curves in a hollow steel tube, a tube filled with liquid, and a concrete filled steel
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tube (CFST), respectively. The excitation frequency of the guided wave is iteratively calculated at
a certain step. The relevant material parameters of tubular structures are shown in Table 2. The relevant
parameters are obtained according to the relevant Chinese specifications. The specific specification is
the Concrete Structure Design Specification of China (GB50010-2010).

Table 2. The relevant material parameters of tubular structures.

Material External Diameter (mm) Internal Diameter (mm) E (GPa) ρ (kg/m3) µ

Steel Tube 220 208 206 7850 0.3
Concrete 208 0 30 2400 0.2
Liquid 208 0 2.18 1000 0.5

Figures 2–4 are the frequency dispersion curves for tubular structures with different interfacial
boundary conditions.
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From Figures 2–4, the following can be concluded:

(1) The ultrasonic guided wave propagation in tubular structures members obviously has the
frequency dispersion and multi-modes characters, and phase velocities and group velocities vary
with change of actuation frequencies.

(2) At a given frequency, two (or more than two) modes are generated at the same time except
at a lower frequency range, but the group velocity (phase velocity) at each mode is different,
and this situation is especially more obvious at higher frequency range than that at lower range.

(3) In addition to the L(0, 1) mode, there is a cutoff frequency for other modes of guided waves.
That is, the guided wave with the mode at higher than cut-off frequency range can be propagated
and the guided wave with the mode is rapidly decaying and not propagating below the
cutoff frequency.

In order to study the influencing factors of the dispersion curves, different parameters were
changed under various boundary conditions, and the same modal curve was drawn for comparison.
Since typical specifications in China are 14–720 mm in diameter for steel tubes, 60 mm for water pipes,
and 220 mm for CTSTs which are commonly used in engineering. Therefore, without loss of generality,
several tubes with diameters in this range are selected for the comparative study. Due to the L(0, 2)
mode frequency dispersion curves are typically and widely applied in DDs and SHMs, the figure
with L(0, 2) mode is used as an example to demonstrate the dispersion characteristics. Figure 5 is
a comparison of the L(0, 2) mode curves for various boundary conditions at different diameters.
Figure 5 shows that the cut-off frequency of the curves trend to move to high frequency with the
decrease of the tubular structure diameters.Sensors 2018, 18, x 12 of 22 
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From Figure 5 we can find that for the same wall thickness, when the diameter increases,
the dispersion curve trends to gradually move to the low frequency region with the obvious shift of
cut-off frequency and the weak change of peak value in the curve.

Figure 6 is the L(0, 2) mode comparison curve for various boundary conditions for the same pipe
diameter. For the pipe with air in it, the group velocity is the highest with a weak dispersive effect.
For the pipe filled with liquid, the group velocity is lower than that filled with air but higher than that
filled with concrete. For the pipe filled with concrete, the group velocity is the lowest one. For the pipe
filled with liquid or concrete, at the low frequency range, the frequency dispersion effect is obvious
which is difficult for DDs and SHMs, but it becomes much easier at the high frequency range due to
the weak dispersion effects.
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It can be seen from Figures 5 and 6 that the UGWs propagation in different interfaces has
dispersion and multi-mode characteristics, which are not only related to the product of frequency and
thickness, but also the internal dielectric material parameters and interfacial boundary conditions.

3. Experimental Verification of Dispersion Curves

The objective of the experiment is to validate the accuracy for the dispersion curves of the tubular
structures under different internal boundary conditions. Therefore, an experimental system that uses
piezoceramics as transducers to excite and receive ultrasonic guided waves is designed. As shown
in Figure 7, the tubular structure is 2 m long, the diameter is 220 mm, and the wall thickness is
6 mm, which is filled in air (hollow), water and concrete, respectively. The tested pipe is sealed at
one end and a communicating vessel at the other end to ensure that the liquid in the tube is fully
filled. The experimental setup includes a function generator for generating the guided wave with the
given frequency, a signal amplifier for amplifying the signal voltage to meet the requirement of the
experiment, and a digital oscilloscope for receiving and restoring the data. The tubular structure is used
as the test specimen where piezoceramic (lead zirconate titanate, PZT) patches are pasted on the surface
of it to be used as transducers. At the excitation end, a group of 16 PZT patches are used as actuators
to generate a guided wave of L(0, 2) mode with the expected frequencies [25]. The selection of the
L(0, 2) mode is because the UGW with the mode is not only typically and widely applied in DDs and
SHMs, but also has the fast propagation velocity, weak frequency dispersion, and the minimized mode
conversion and superposition effects at boundaries, which is much beneficial for the data processing
of the received guided waves. The other group of PZT patches is used as sensors which are separately
located at the positions A and B, 600 mm away from each other. The actuators are activated to generate
the guided waves propagating along the tubular structures and being received simultaneously at two
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points of A and B. The arrival time difference of the signal packages can be extracted to calculate the
group velocities according to the given distance by using the time of flight method.
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As shown in Figure 8, a five peak impulse signal modulated by Hanning window function is
applied in the tubular structure which is filled in water and taken as an example to show how to
calculate the signal arrival time difference, and the wave arrival time corresponding to the peak of the
first arrival wave package is used to calculate the time arrival difference. The center frequency of the
signal is 70 kHz and the excitation amplitude is ±10 V.
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It can be seen from Figure 8, the time difference between the head wave of the ultrasonic guided
wave reaching the two points A and B is:

∆t = ta − tb = 0.0007345 s

It is known that the distance between two points of A and B is 600 mm, then the wave velocity
can be calculated as:

V =
S
∆t

=
0.6

0.0007345
= 816.88 m/s

The same method is used to measure the signal time difference for the three kinds of interfacial
boundary conditions. Tables 3–5 is the measured value of the guided wave velocity at different
frequencies under different boundary conditions, respectively.

Table 3. Theoretical and experimental values in the tubular which is filled in air.

Frequencies (kHz) 10 20 30 40 50 60 70 80

Theoretical velocities (m/s) 3741 5280 5301 5283 5246 5192 5117 5015
Experimental velocities (m/s) 3799 5582 5154 5669 5219 5495 5224 5146

Error (%) 1.55 5.72 2.77 7.31 0.51 5.84 2.09 2.61

Table 4. Theoretical and experimental values in the tubular which is filled in water.

Frequencies (kHz) 10 20 30 40 50 60 70 80

Theoretical velocities (m/s) 588 768 817 838 849 854 858 859
Experimental velocities (m/s) 608 695 785 792 768 773 817 806

Error (%) 3.40 9.51 3.92 5.49 9.54 9.48 4.78 6.17

Table 5. Theoretical and experimental values in the tubular which is filled in concrete.

Frequencies (kHz) 15 20 30 40 50 60 70 80

Theoretical velocities (m/s) 3327 1343 1786 1968 2038 2074 2110 2617
Experimental velocities (m/s) 3189 1416 1841 2084 2200 1927 2239 2399

Error (%) 4.15 5.44 3.08 5.89 7.95 7.09 6.11 8.33

Figure 9 is a comparison of guided wave velocity under different boundary conditions.
From Tables 3–5 as well as Figure 9, due to the accuracy of the test setup and the interference

of the on-site environment, there is a certain error between the measured value and the theoretical
one, but it can be seen that the maximum error between theoretical results is very close. This validates
the correctness and effectiveness of the dispersion curves of the UGWs propagating in the tubular
structures under different boundary conditions.
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4. Damage Identification Experiment

In order to validate the efficiency of theoretical analysis results and better use the dispersion
curves to detect the interface damages, an experimental system is designed as shown in Figure 10.
The tested object is a CFST column with artificial interfacial damage. The CFST column has a length of
2 m, a diameter of 220 mm and a wall thickness of 6 mm, and the concrete strength is C30 according
to the corresponding design code of China. A thin film of 100 mm × 100 mm × 1 mm is artificially
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arranged inside the pipe wall before casting concrete to simulate interfacial debonding damage between
concrete and steel tubular wall. The thickness of the thin film is 1 mm to simulate slight damage
in the actual situation. The width (length) of the sheet of 100 mm is selected because of one more
wavelength of the actuated UGW which is more conducive to damage detection. PZTs are arranged
and symmetrically pasted on the surface of the CFST column at A, B and C locations, respectively.
Point A is the excitation location, and point B and C are the reception points. It is assumed that the AB
segment is in a healthy state, and the BC segment is in a damaged state. The two segments will be
used to compare for identifying the damage by UGW-based method. The experimental setup is as the
same as the above-mentioned one.
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Figure 10. The schematic of damage identification experimental system.

As shown in Figure 11, a five peak impulse signal modulated by Hanning window function
is applied in the CFST column. The signal with the center frequency of 60 kHz and the excitation
amplitude of ± 10 V is activated, the L(0, 2) mode guided wave is simultaneously propagating along
two direction of the CFST column, and the signals are received by PZT sensors located at the points A
and B, respectively.

From Figure 11, we can see that the signal amplitude in the healthy state is obviously greater
than that in a damaged state. This is because the existence of the interfacial damage weakens the
propagation of the UGWs and causes the sensor signal energy to decrease. The signal energy-based
method is used to set up the damage identification variables and index to experimentally evaluate the
damage level.

The amplitude of a sensor signal is an ideal parameter for damage identifications by using
wave-based method. In general, damages may attenuate the amplitude of the sensor signal, and the
amplitude attenuation degree may increase with development of the damages. The amplitude of
the sensor signal is one of the external manifestations of the UGW energy. Therefore, the energy
of the sensor signal can be used as a characteristic parameter to qualitatively identify structural
damages. [24,28]. The sensor signal is a group of discrete values and the signal energy can be calculated
by Equation (40), and the signal energy is applied as the damage identification variable:

E =
∞

∑
n=−∞

|x(n)|
2

(40)

in which, x(n) is the signal corresponding to the discrete sequence; n is the sampling point.
The guided wave signal will undergo the energy attenuation during the propagation in

component, and the relative percentage of the energy of the received signal to that of the excitation
signal is defined as the attenuation index. As shown in the Equation (41):

α =
E

Em
(41)
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where α is the attenuation index; E is the sensor energy which can be calculated by Equation (40);
Em is the actuation signal energy, which comes from the oscilloscope reading by directly connecting
the actuation electrical wire to the oscilloscope.

When the performance of the structural material is unchangeable, the attenuation of the signal
energy is mainly affected by the excitation frequency. As shown in Table 6 is the relationship
between the excitation frequency and the received energy and attenuation coefficient. Figure 12
is the relationship curve between the attenuation coefficient and the excitation frequencies.
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Table 6. Energy value and attenuation coefficient at each frequency level.

Frequencies (kHz) 10 20 30 40 50 60 70 80

Energy 1.04 1.03 1.01 0.99 0.86 0.76 0.68 0.66
Attenuation index (%) 7.98 8.64 9.28 9.37 10.5 11.1 10.6 10.4
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As can be seen from Figure 12a, as the frequency increases, the signal energy attenuation is more
obvious. The attenuation coefficient increases with the increase of frequency at low frequency range,
and becomes nearly flat after reaching 60 kHz, as shown in Figure 12b.

The UGWs with the same frequency is actuated, and the guided wave is propagating along the
healthy CFST segment and the damaged CFST segment, and all other parameters are the same except
the damage. The received signal energy values are shown in Table 7. The comparison curve of received
signal energy under healthy state and damage state is shown in Figure 13.

Table 7. The received signal energy values.

Frequencies (kHz) 10 20 30 40 50 60 70 80

Healthy State 1.04 1.03 1.01 0.99 0.86 0.76 0.68 0.66
Damaged State 0.92 0.9 0.89 0.87 0.76 0.68 0.59 0.57
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It can be seen from the Figure 13 that after the UGWs with the same frequency propagate for the
same distance in the CFST, but the energy attenuation is different between the healthy state and the
damaged one. In the damaged state, the energy attenuation is more obvious than that in the healthy
one. The percentage of the energy value in the damaged state and the healthy state is redefined as the
damage variable, as shown in Equation (42):

H =
Er

Eh
(42)
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where Er is the sensor signal energy ratio for the damaged state; Eh is the sensor signal energy ratio
for the healthy state. For the healthy state, Er = Eh , and H = 1. Therefore, the corresponding damage
index can be defined as Equation (43):

D = 1− H =
Eh − Er

Eh
×% (43)

As shown in Table 8 is the damage index value at each frequency, and Figure 13 is the relationship
curve between the damage index and excitation frequencies.

Table 8. The damage index value at each frequency.

Frequency (kHz) 10 20 30 40 50 60 70 80

Damage index (%) 11.54 12.62 11.88 12.12 11.63 10.53 13.24 13.64

As can be seen from Figure 14:

(1) Under the same damage conditions, the damage index does not change significantly with different
excitation frequencies.

(2) The damage index value is in the range of 0 and 1. For the healthy state, D = 0; for the damaged
state, 0 < D < 1. When the damage index D tends to zero, the CFST structure is prone to be
healthy; when the damage index D tends to increase, the CFST might be damaged and the greater
value of D means the more serious damages.
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5. Conclusions

In this paper, the UGW propagation characteristics in different interfaces are classified and
discussed, and the frequency dispersion curves for both group and phase velocities of UGWs are
drawn. To validate the efficiency of theoretical and numerical results, three kinds of model tubular
structures experiments filled in air (hollow), water and concrete, respectively, are performed using
lead zirconate titanate (PZT) transducer-based UGWs. Obviously, the maximum error between
theoretical results and experimental ones is very small, validating the correctness and effectiveness of
the dispersion curves of the UGWs propagating in the tubular structures under different boundary
conditions:

(1) From the comparison curves we can see that the propagation of UGWs in different interfaces has
typical dispersion and multi-modes characteristics, which are not only related to the product of
frequency and thickness, but also to the internal dielectric material parameters and interfacial
boundary conditions.
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(2) From the comparison among tubular structures filled with air, liquid and concrete, the changes
of the interfacial boundaries (or connections) result in complicated dispersion characteristics
for the propagation of UGWs, which increase the difficulty for DDs and SHM using
UGW-based methods.

(3) After the UGWs propagate through the damage, the energy attenuation in the damaged tubular
structure is more obvious than it is in a healthy one. The percentage of the energy value in the
damaged state and the healthy state is defined as the damage index D. For the healthy state, D = 0;
for the damaged state, 0 <D < 1. When the damage index D tends to zero, the CFST structure is
prone to be healthy; when the damage index D tends to increase, the CFST might be damaged
and the greater value of D means the more serious damages.
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