Study of the Quality Attributes of Selected Blueberry (Vaccinium corymbosum L.) Varieties Grown under Different Irrigation Regimes and Cultivation Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Weight and Diameter Assessment
2.3. Color
2.4. Firmness
2.5. Titratable Acidity (TA) and pH
2.6. Soluble Solids Content (SSC)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Influence of Deficit Irrigation on Fruit Quality
3.2. Influence of the Cultivation System on Fruit Quality
3.2.1. Interactions CS × SY
3.2.2. Interactions CS × V
3.3. Influence of Genotype on Fruit Quality
Interactions V × SY
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The Ministry of Agriculture, Fisheries and Food. Available online: https://www.mapa.gob.es/en/ (accessed on 30 September 2020).
- Gavrilova, V.; Kajdžanoska, M.; Gjamovski, V.; Stefova, M. Separation, characterization and quantification of phenolic compounds in blueberries and red and black currants by HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 2011, 59, 4009–4018. [Google Scholar] [CrossRef]
- Li, C.; Feng, J.; Huang, W.Y.; An, X.T. Composition of polyphenols and antioxidant activity of rabbiteye blueberry (Vaccinium ashei) in Nanjing. J. Agric. Food Chem. 2013, 61, 523–531. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Tulipani, S.; Marzban, G.; Herndl, A.; Laimer, M.; Mezzetti, B.; Battino, M. Influence of environmental and genetic factors on health-related compounds in strawberry. Food Chem. 2011, 124, 906–913. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Hernández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Influence of climatic conditions on the phenolic composition of Vitis vinifera L. cv. Graciano. Anal. Chim. Acta 2012, 732, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Di Vittori, L.; Mazzoni, L.; Battino, M.; Mezzetti, B. Pre-harvest factors influencing the quality of berries. Sci. Hortic. 2018, 233, 310–322. [Google Scholar] [CrossRef]
- Albert, T.; Karp, K.; Starast, M.; Moor, U.; Paal, T. Effect of fertilization on the lowbush blueberry productivity and fruit composition in peat soil. J. Plant Nutr. 2011, 34, 1489–1496. [Google Scholar] [CrossRef]
- Cattivelli, L.; Rizza, F.; Badeck, F.W.; Mazzucotelli, E.; Mastrangelo, A.M.; Francia, E.; Marè, C.; Tondelli, A.; Stanca, A.M. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Res. 2008, 105, 1–14. [Google Scholar] [CrossRef]
- Haines, A. Climate Change 2001: The Scientific Basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Winden, P.J., Dai, X., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 1–881. [Google Scholar]
- Costa, J.M.; Ortuño, M.F.; Chaves, M.M. Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture. J. Integr. Plant Biol. 2007, 49, 1421–1434. [Google Scholar] [CrossRef]
- Tortosa, G.; Correa, D.; Sánchez-Raya, A.J.; Delgado, A.; Sánchez-Monedero, M.A.; Bedmar, E.J. Effects of nitrate contamination and seasonal variation on the denitrification and greenhouse gas production in La Rocina Stream (Doñana National Park, SW Spain). Ecol. Eng. 2011, 37, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, T.P.; Lopes, C.M.; Rodrigues, M.L.; De Souza, C.R.; Maroco, J.P.; Pereira, J.S.; Silva, J.R.; Chaves, M.M. Partial rootzone drying: Effects on growth and fruit quality of field-grown grapevines (Vitis vinifera). Funct. Plant Biol. 2003, 30, 663–671. [Google Scholar] [CrossRef]
- Grant, O.M.; Stoll, M.; Jones, H.G. Partial rootzone drying does not affect fruit yield of raspberries. J. Hortic. Sci. Biotechnol. 2004, 79, 125–130. [Google Scholar] [CrossRef]
- Lobos, T.E.; Retamales, J.B.; Ortega-Farías, S.; Hanson, E.J.; López-Olivari, R.; Mora, M.L. Pre-harvest regulated deficit irrigation management effects on post-harvest quality and condition of V. corymbosum fruits cv. Brigitta. Sci. Hortic. 2016, 207, 152–159. [Google Scholar] [CrossRef]
- Lobos, T.E.; Retamales, J.B.; Ortega-Farías, S.; Hanson, E.J.; López-Olivari, R.; Mora, M.L. Regulated deficit irrigation effects on physiological parameters, yield, fruit quality and antioxidants of Vaccinium corymbosum plants cv. Brigitta. Irrig. Sci. 2018, 36, 49–60. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Matthews, M.A.; Di Gaspero, G.; Gambetta, G.A. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 2007, 227, 101–112. [Google Scholar] [CrossRef]
- Giné Bordonaba, J.; Terry, L.A. Manipulating the taste-related composition of strawberry fruits (Fragaria × ananassa) from different cultivars using deficit irrigation. Food Chem. 2010, 122, 1020–1026. [Google Scholar] [CrossRef] [Green Version]
- Grant, O.M.; Johnson, A.W.; Davies, M.J.; James, C.M.; Simpson, D.W. Physiological and morphological diversity of cultivated strawberry (Fragaria × ananassa) in response to water deficit. Environ. Exp. Bot. 2010, 68, 264–272. [Google Scholar] [CrossRef]
- Ehret, D.L.; Frey, B.; Forge, T.; Helmer, T.; Bryla, D.R. Effects of drip irrigation configuration and rate on yield and fruit quality of young Highbush blueberry plants. HortScience 2012, 47, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Kalt, W.; Ryan, D.A.J.; Duy, J.C.; Prior, R.L.; Ehlenfeldt, M.K.; Vander Kloet, S.P. Interspecific variation in anthocyanins, phenolics, and antioxidant capacity among genotypes of highbush and lowbush blueberries (Vaccinium section cyanococcus spp.). J. Agric. Food Chem. 2001, 49, 4761–4767. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chen, H.; Camp, M.J.; Ehlenfeldt, M.K. Genotype and growing season influence blueberry antioxidant capacity and other quality attributes. Int. J. Food Sci. Tech. 2012, 47, 1540–1549. [Google Scholar] [CrossRef]
- Montecchiarini, M.L.; Bello, F.; Rivadeneira, M.F.; Vázquez, D.; Podestá, F.E.; Tripodi, K.E.J. Metabolic and physiologic profile during the fruit ripening of three blueberries highbush (Vaccinium corymbosum) cultivars. J. Berry Res. 2018, 8, 177–192. [Google Scholar] [CrossRef]
- Scalzo, J.; Stevenson, D.; Hedderley, D. Polyphenol compounds and other quality traits in blueberry cultivars. J. Berry Res. 2015, 5, 117–130. [Google Scholar] [CrossRef]
- Scalzo, J.; Politi, A.; Pellegrini, N.; Mezzetti, B.; Battino, M. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 2005, 21, 207–213. [Google Scholar] [CrossRef]
- Corona, G.; Tang, F.; Vauzour, D.; Rodriguez-Mateos, A.; Spencer, J.P.E. Assessment of the anthocyanidin content of common fruits and development of a test diet rich in a range of anthocyanins. J. Berry Res. 2011, 1, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Connor, A.M.; Luby, J.J.; Tong, C.B.S.; Finn, C.E.; Hancock, J.F. Genotypic and environmental variation in antioxidant activity, total phenolic content, and anthocyanin content among blueberry cultivars. J. Am. Soc. Hortic. Sci. 2002, 127, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y.; Chen, C.T.; Wang, C.Y. The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Food Chem. 2009, 112, 676–684. [Google Scholar] [CrossRef]
- Bourn, D.; Prescott, J. A comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods. Crit. Rev. Food Sci. Nutr. 2002, 42, 1–34. [Google Scholar] [CrossRef]
- Asami, D.K.; Hong, Y.J.; Barrett, D.M.; Mitchell, A.E. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agric. Food Chem. 2003, 51, 1237–1241. [Google Scholar] [CrossRef]
- Crecente-Campo, J.; Nunes-Damaceno, M.; Romero-Rodríguez, M.A.; Vázquez-Odériz, M.L. Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (Fragaria×ananassa Duch, cv Selva). J. Food Compos. Anal. 2012, 28, 23–30. [Google Scholar] [CrossRef]
- Cardeñosa, V.; Medrano, E.; Lorenzo, P.; Sánchez-Guerrero, M.C.; Cuevas, F.; Pradas, I.; Moreno-Rojas, J.M. Effects of salinity and nitrogen supply on the quality and health-related compounds of strawberry fruits (Fragaria × ananassa cv. Primoris). J. Sci. Food Agric. 2015, 95, 2924–2930. [Google Scholar] [CrossRef]
- Cardeñosa, V.; Girones-Vilaplana, A.; Muriel, J.L.; Moreno, D.A.; Moreno-Rojas, J.M. Influence of genotype, cultivation system and irrigation regime on antioxidant capacity and selected phenolics of blueberries (Vaccinium corymbosum L.). Food Chem. 2016, 202, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Mingeau, M.; Perrier, C.; Améglio, T. Evidence of drought-sensitive periods from flowering to maturity on highbush blueberry. Sci. Hortic. 2001, 89, 23–40. [Google Scholar] [CrossRef]
- Prange, R.K.; DeEll, J.R. Preharvest factors affecting postharvest quality of berry crops. HortScience 1997, 32, 824–830. [Google Scholar] [CrossRef] [Green Version]
- Bryla, D.R.; Yorgey, B.; Shireman, A.D. Irrigation management effects on yield and fruit quality of highbush blueberry. Acta Hortic. 2009, 810, 649–656. [Google Scholar] [CrossRef]
- Bryla, D.R. Water requirements of young blueberry plants irrigated by sprinklers, microsprays and drip. Acta Hortic. 2008, 792, 135–139. [Google Scholar] [CrossRef]
- Hoppula, K.I.; Salo, T.J. Tensiometer-based irrigation scheduling in perennial strawberry cultivation. Irrig. Sci. 2007, 25, 401–409. [Google Scholar] [CrossRef]
- Ozeki, M.; Tamada, T. The potentials of forcing culture of southern highbush blueberry in Japan. Acta Hortic. 2006, 715, 241–246. [Google Scholar] [CrossRef]
- Ciordia, M.; García, J.C.; Díaz, M.B. Off-season production of southern highbush blueberries in the north of Spain. Acta Hortic. 2006, 715, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Ogden, A.B.; van Iersel, M.W. Southern highbush Blueberry production in High Tunnels: Temperatures, development, yield, and fruit quality during the establishment years. HortScience 2009, 44, 1850–1856. [Google Scholar] [CrossRef] [Green Version]
- Kader, A.A. Quality and its maintenance in relation to the postharvest physiology of strawberry. In The Strawberry into the 21st Century; Dale, A., Luby, J., Eds.; Timber Press: Portland, OR, USA, 1991; pp. 145–152. [Google Scholar]
- Kadir, S.; Carey, E.; Ennahli, S. Influence of high tunnel and field conditions on strawberry growth and development. HortScience 2006, 41, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Retamales, J.B.; Montecino, J.M.; Lobos, G.A.; Rojas, L.A. Colored shading nets increase yields and profitability of highbush blueberries. Acta Hortic. 2008, 770, 193–197. [Google Scholar] [CrossRef]
- Lobos, G.A.; Retamales, J.B.; Del Pozo, A.; Hancock, J.F.; Flore, J.A. Physiological response of Vaccinium corymbosum “Elliott” to shading nets in Michigan. Acta Hortic. 2009, 810, 465–470. [Google Scholar] [CrossRef]
- Hu, L.; Yang, C.; Zhang, L.; Feng, J.; Xi, W. Effect of light-emitting diodes and ultraviolet irradiation on the soluble sugar, organic acid, and carotenoid content of postharvest sweet oranges (Citrus sinensis (L.) osbeck). Molecules 2019, 24, 3440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correia, S.; Gonçalves, B.; Aires, A.; Silva, A.; Ferreira, L.; Carvalho, R.; Fernandes, H.; Freitas, C.; Carnide, V.; Silva, A.P. Effect of Harvest Year and Altitude on Nutritional and Biometric Characteristics of Blueberry Cultivars. J. Chem. 2016, 2016, 1–12. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Scalzo, J.; Stevenson, D.; Hedderley, D. Blueberry estimated harvest from seven new cultivars: Fruit and anthocyanins. Food Chem. 2013, 139, 44–50. [Google Scholar] [CrossRef]
- Gilbert, J.L.; Olmstead, J.W.; Colquhoun, T.A.; Levin, L.A.; Clark, D.G.; Moskowitz, H.R. Consumer-assisted selection of blueberry fruit quality traits. HortScience 2014, 49, 864–873. [Google Scholar] [CrossRef]
SSC | TA | pH | Firmness | h° | C* | L* | Weight | Size | |
---|---|---|---|---|---|---|---|---|---|
Variety | |||||||||
‘Rocio’ | 14.77 a | 0.52 a | 3.62 c | 1.62 c | 279.6 a | 4.55 c | 30.75 c | 2.09 b | 15.05 c |
V2 | 13.65 b | 0.42 b | 3.77 b | 1.97 a | 268.4 c | 5.71 a | 35.40 a | 2.27 b | 15.84 b |
V3 | 12.89 c | 0.35 c | 3.99 a | 1.84 b | 271.8 b | 4.98 b | 31.63 b | 2.79 a | 16.94 a |
Sampling year | |||||||||
2011 | 13.66 | 0.32 b | 4.14 a | 1.65 b | 270.5 b | 4.68 b | 32.33 b | 2.46 | 15.59 b |
2012 | 13.88 | 0.53 a | 3.44 b | 1.96 a | 276.1a | 5.47 a | 32.95 a | 2.31 | 16.29 a |
Cultivation system | |||||||||
Open field | 12.86 b | 0.52 a | 3.62 b | 1.81 | 273.3 | 5.19 | 32.57 | 2.32 | 15.90 |
Plastic tunnels | 14.68 a | 0.34 b | 3.97 a | 1.81 | 273.3 | 4.96 | 32.61 | 2.45 | 15.98 |
Irrigation regime | |||||||||
100% ETc | 13.73 | 0.43 | 3.76 | 1.77 b | 272.9 | 5.14 | 32.60 | 2.40 | 15.95 |
80% ETc | 13.81 | 0.42 | 3.82 | 1.85 a | 273.6 | 5.02 | 32.50 | 2.37 | 15.93 |
Variety (V) | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Sampling year (SY) | ns | *** | *** | *** | *** | *** | * | ns | *** |
Cultivation system (CS) | ** | *** | *** | ns | ns | ns | ns | ns | ns |
Irrigation regime (IR) | ns | ns | ns | ** | ns | ns | ns | ns | ns |
V × SY | *** | ** | *** | ns | ** | * | ns | *** | *** |
V × CS | ** | * | * | ns | ns | ** | * | ns | ns |
V × IR | ns | ns | ns | ns | ns | ns | ns | ns | ns |
SY × CS | * | ns | *** | ns | ns | ns | ns | ns | * |
SY × IR | ns | ns | ns | ns | ns | ns | ns | ns | ns |
CS × IR | ns | ns | ns | ns | ns | ns | ns | ns | ns |
SSC | TA | pH | Firmness | h° | C* | L* | Weight | Size | ||
---|---|---|---|---|---|---|---|---|---|---|
Open field | 2011 | 12.42 c | 0.42 | 3.92 b | 1.66 | 269.98 | 4.69 | 32.32 | 2.32 | 15.39 c |
2012 | 13.31 b | 0.62 | 3.32 d | 1.95 | 276.51 | 5.69 | 32.82 | 2.32 | 16.42 a | |
Plastic Tunnels | 2011 | 14.89 a | 0.22 | 4.37 a | 1.64 | 270.96 | 4.67 | 32.14 | 2.59 | 15.80 b |
2012 | 14.46 a | 0.45 | 3.56 c | 1.97 | 275.59 | 5.26 | 33.08 | 2.31 | 16.17 a |
SSC | TA | pH | Firmness | h° | C* | L* | Weight | Size | ||
---|---|---|---|---|---|---|---|---|---|---|
Open Field | ‘Rocío’ | 13.54 c | 0.61 a | 3.46 d | 1.64 | 279.82 | 4.57 c | 30.54 d | 2.02 | 15.06 |
V2 | 12.54 d,e | 0.54 b | 3.54 d | 1.91 | 268.46 | 5.74 a | 35.19 a | 2.19 | 15.69 | |
V3 | 12.51 e | 0.40 c | 3.85 c | 1.86 | 271.45 | 5.27 b | 31.98 b | 2.75 | 16.94 | |
Plastic Tunnels | ‘Rocío’ | 15.99 a | 0.43 c | 3.77 c | 1.59 | 279.28 | 4.53 c | 30.96 c,d | 2.17 | 15.03 |
V2 | 14.76 b | 0.29 d | 4.01 b | 2.03 | 268.33 | 5.67 a,b | 35.60 a | 2.36 | 16.00 | |
V3 | 13.27 c,d | 0.29 d | 4.13 a | 1.81 | 272.22 | 4.70 c | 31.28 b,c | 2.82 | 16.93 |
SSC | TA | pH | Firmness | h° | C* | L* | Weight | Size | ||
---|---|---|---|---|---|---|---|---|---|---|
‘Rocio’ | 2011 | 13.69 b,c | 0.44 b | 3.84 c | 1.52 | 276.1 b | 4.03 d | 30.22 | 1.92 e | 14.10 c |
2012 | 15.84 a | 0.59 a | 3.39 d | 1.71 | 283.0 a | 5.07 b,c | 31.28 | 2.28 c,d | 16.00 b | |
V2 | 2011 | 14.11 b | 0.33 c | 4.06 b | 1.77 | 267.0 c | 5.50 a,b | 34.98 | 2.43 b,c | 15.74 b |
2012 | 13.2 c,d | 0.50 b | 3.49 d | 2.17 | 269.8 c | 5.92 a | 35.81 | 2.12 d,e | 15.94 b | |
V3 | 2011 | 13.17 c,d | 0.19 d | 4.53 a | 1.66 | 268.3 c | 4.53 c | 31.50 | 3.03 a | 16.94 a |
2012 | 12.61 d | 0.50 b | 3.45 d | 2.01 | 275.4 b | 5.44 a,b | 31.77 | 2.55 b | 16.94 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ordóñez-Díaz, J.L.; Pereira-Caro, G.; Cardeñosa, V.; Muriel, J.L.; Moreno-Rojas, J.M. Study of the Quality Attributes of Selected Blueberry (Vaccinium corymbosum L.) Varieties Grown under Different Irrigation Regimes and Cultivation Systems. Appl. Sci. 2020, 10, 8459. https://doi.org/10.3390/app10238459
Ordóñez-Díaz JL, Pereira-Caro G, Cardeñosa V, Muriel JL, Moreno-Rojas JM. Study of the Quality Attributes of Selected Blueberry (Vaccinium corymbosum L.) Varieties Grown under Different Irrigation Regimes and Cultivation Systems. Applied Sciences. 2020; 10(23):8459. https://doi.org/10.3390/app10238459
Chicago/Turabian StyleOrdóñez-Díaz, José L., Gema Pereira-Caro, Vanessa Cardeñosa, José L. Muriel, and José M. Moreno-Rojas. 2020. "Study of the Quality Attributes of Selected Blueberry (Vaccinium corymbosum L.) Varieties Grown under Different Irrigation Regimes and Cultivation Systems" Applied Sciences 10, no. 23: 8459. https://doi.org/10.3390/app10238459
APA StyleOrdóñez-Díaz, J. L., Pereira-Caro, G., Cardeñosa, V., Muriel, J. L., & Moreno-Rojas, J. M. (2020). Study of the Quality Attributes of Selected Blueberry (Vaccinium corymbosum L.) Varieties Grown under Different Irrigation Regimes and Cultivation Systems. Applied Sciences, 10(23), 8459. https://doi.org/10.3390/app10238459