Changes in Fatigue Recovery and Muscle Damage Enzymes after Deep-Sea Water Thalassotherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. DSWTT Treatment Program
2.3. Measurement Parameters and Method
2.3.1. Fatigue Inducement Test
2.3.2. Blood Test
2.3.3. Statistical Analysis
3. Results
3.1. Fatigue Recovery
3.2. Enzymes Released in Muscle Damage
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Kang, S.R.; Jeong, G.Y.; Bae, J.J.; Min, J.Y.; Yu, C.H.; Kim, J.J.; Kwon, T.K. Effect of muscle function and muscular reaction of knee joint in the twenties on the whole body vibration exercise. J. Korean Soc. Precis. Eng. 2013, 30, 762–768. [Google Scholar] [CrossRef]
- Cho, J.S.; Kwon, T.K.; Hong, J.P. A study of evaluation index development of healthcare rehabilitation device design. Korea Soc. Emot. Sensib. 2014, 17, 129–142. [Google Scholar] [CrossRef]
- Kathryu, A.; Lentz, M.J.; Taylor, D.L. Fatigue as a response to environmental demands in women’s lives image. J. Nurs. Scholarsh. 1994, 26, 149–154. [Google Scholar]
- Blesch, K.S.; Paice, J.A.; Wickham, R.; Harte, N.; Schnoor, D.K.; Purl, S.; Rehwal, T.M.; Kopp, P.L.; Manson, S.; Coveny, S.B. Correlates of fatigue in people with breast or lung cancer. Oncol. Nurs. Forum 1991, 18, 81–87. [Google Scholar]
- Youn, B.B.; Kang, H.C.; Shin, K.K.; Lee, K.S. An analysis of fatigue among outpatients. Korean J. Fam. Med. 1999, 20, 978–990. [Google Scholar]
- Larun, L.; Brurberg, K.G.; Odgaard-Jensen, J.; Price, J.R. Exercise therapy for chronic fatigue syndrome. Cochrane Database Syst. Rev. 2017, 25, 1–4. [Google Scholar]
- Kay, D.; Marino, F.E.; Cannon, J.; Gibson, A.S.C.; Lambert, M.I.; Noakes, T.D. Evidence for neuromuscular fatigue during high-intensity cycling in warm, humid conditions. Eur. J. Appl. Physiol. 2001, 84, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Ohkuwa, T.; Miyamura, M. Plasma LDH activity and LDH isozymes after 400m and 3,000m runs in sprint and long distance runners. J. Sports Med. Phys. Fit. 1986, 26, 362–368. [Google Scholar]
- Kim, J.K.; Moon, H.W. Effect of Blood fatigue factors following eccentric exercise on delayed muscle damage. Exerc. Sci. 2004, 13, 251–262. [Google Scholar]
- Kim, I.G. The effect of sauna and half-bath participation on systolic blood pressure, heart rate and vascular elasticity of middle-aged men. Korean Sports Res. 2006, 17, 319–327. [Google Scholar]
- Cha, S.W.; Shin, S.K.; Lim, I.S. The effect of passive recovery, massage, cold & hot bath and aroma therapy on fatigue metabolic substrate after 10km running. J. Exerc. Nutr. Biochem. 2006, 10, 37–42. [Google Scholar]
- Darryl, J. Alternating hot and cold water immersion for athlete recovery: A review. Phys. Ther. Sports 2004, 5, 26–32. [Google Scholar]
- Mang, H.J. Cortisol and testosterone changes in cold therapy after muscle fatigue induced. Korean J. Phys. Educ. 2002, 41, 317–323. [Google Scholar]
- Pedersen, B.K.; Hoffman-Goetz, L. Exercise and the immune system regulation, integration, and adaptation. Physiol. Rev. 2000, 80, 1055–1081. [Google Scholar] [CrossRef] [Green Version]
- Brancaccio, P.; Maffulli, N.; Buonauro, R.; Limongelli, F.M. Serum enzyme monitoring in sports medicine. Clin. Sports Med. 2008, 27, 1–18. [Google Scholar] [CrossRef]
- Lippi, G.; Schena, F.; Salvagno, G.L.; Montagnana, M.; Gelati, M.; Tarper, I.C.; Banfi, G.; Guidi, G.C. Acute variation of biochemical markers of muscle damage following a 21-km, half-marathon run. Scand. J. Clin. Lab. Investig. 2008, 68, 667–672. [Google Scholar] [CrossRef]
- Yeom, I.H. Effect of Exercise Intensity on Inflammatory Marker and Immunoglobulin. Master’s Thesis, Incheon National University, Incheon, Korea, 2011. Unpublished. [Google Scholar]
- Lee, S.K.; Chung, E.Y. The effect of Ai Chi aquatic exercise to the level of human stress and muscle activities. Korean J. Wellness 2014, 9, 131–137. [Google Scholar]
- Hay, L.; Wylie, K. Towards evidence-based emergency medicine: Best BETs from the Manchester Royal Infirmary. BET 4: Hydrotherapy following rotator cuff repair. Emerg. Med. J. 2011, 28, 634–635. [Google Scholar]
- Jun, S.Y.; Lee, K.S.; Nam, K.S. Efficacy testing for tarasotherapy in deep sea water. In Proceedings of the Korean Marine Environmental Engineering Society, Seoul, Korea, 21 May 2017. [Google Scholar]
- Weinberg, R.; Jackson, A. The relationship of massage and exercise to mood enhancement. Sports Psychol. 1988, 2, 202–211. [Google Scholar] [CrossRef]
- Dubrovsky, V.I. Changes in muscle and venous blood flow after massage. Sov. Sports Rev. 1982, 4, 56–57. [Google Scholar]
- Mooenthan, A.; Nivethitha, L. Scientific evidence-based effects of hydrotherapy on various systems of the body. N. Am. J. Med. Sci. 2014, 6, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Leger, L.A.; Lambert, J. A maximal multistage 20m shuttle run test to predict VO2max. Eur. J. Appl. Physiol. 1982, 49, 1–12. [Google Scholar] [CrossRef]
- Brewer, J.; Ramsbottom, R.; Williams, C. Multistage Fitness Test; National Coaching Foundation: Leeds, UK, 1988. [Google Scholar]
- Armstrong, R.B. Initial event in exercise induced muscular injury. Med. Sci. Sport Exerc. 1990, 22, 429–435. [Google Scholar]
- Barranco, T.; Tvarijonaviciute, A.; Tecles, F.; Carrillo, J.M.; Sánchez-Resalt, C.; Jimenez-Reyes, P.; Rubio, M.; García-Balletbó, M.; Cerón, J.J.; Cugat, R. Changes in CK, LDH and AST in saliva samples after an intense exercise: A pilot study. J. Sports Med. Phys. Fit. 2017, 5, 2441–2455. [Google Scholar]
- Lee, S.S.; Kim, J.T.; Shin, W.S.; Kim, N.I.; Ryu, O.S.; Jang, J.H. Changes of trunk ROM and maximal muscular strength after deep sea water thalassotherapy. Korean Soc. Growth Dev. 2017, 25, 353–361. [Google Scholar]
- Gibson, H.; Edwards, R.H.T. Muscular exercise and fatigue. Sports Med. 1985, 2, 120–132. [Google Scholar] [CrossRef]
- Heath, G.W.; Gavin, J.R., III; Hinderliter, J.M.; Hagberg, J.M.; Bloomfield, S.A.; Hollozy, J.O. Effect of exercise and lack of exercise on glucose tolerance and insulin sensitivity. J. Appl. Physiol. 1983, 55, 512–517. [Google Scholar] [CrossRef]
- Praet, S.F.; van Loon, L.J. Exercise therapy in type 2 diabetes. Acta Diabetol. 2009, 46, 263–278. [Google Scholar] [CrossRef] [Green Version]
- Borer, J.; Armstrong, P. Proceedings of the 99th meeting of the Food and Drug Administration Cardiovascular and Renal Drugs Advisory Committee. Circulation 2003, 107, e9052. [Google Scholar] [CrossRef]
- Jung, B.K. Understanding of aquatic rehabilitation movement. Korean Assoc. Certif. Exerc. Prof. Annu. Meet. 2002, 1, 13–17. [Google Scholar]
- Aslan, A.; Acikada, C.; Güvenç, A.; Gören, H.; Hazir, T.; Ozkara, A. Metabolic demands of match performance in young soccer players. J. Sports Sci. Med. 2012, 11, 170–179. [Google Scholar]
- Park, H.S.; Kim, M.K.; Shim, B.C.; Chae, J.R.; Cho, S.C.; Jun, H.Y.; Kim, H.J. A comparative analysis of blood lactate, LDH, and glucose before and after treadmill exercise in athletics. J. Dongui Physiol. 2006, 20, 1254–1260. [Google Scholar]
- Park, J.O. The Effect of Sports Massage on the Recovery of Fatigue and Injury Prevention of Dancers. Master’s Thesis, Kyungseung University, Busan, Korea, 2001. Unpublished. [Google Scholar]
- Meneguello, M.O.; Mendonca, J.R.; Lancha, A.H., Jr.; Costa Rosa, L.F. Effect of arginine, ornithine and citrulline supplementation upon performance and metabolism of trained rats. Cell Biochem. Funct. 2003, 21, 85–91. [Google Scholar] [CrossRef]
- Blomstrand, E.; Celsing, F.; Newshorme, E.A. Changes in concentration of aromatic and branched chain amino acid during sustained exercise in man and their possible role in fatigue. Acta Physiol. Scand. 1998, 33, 115–121. [Google Scholar] [CrossRef]
- Marybetts, S. Modern Hydrotherapy for the Massage Therapist; Lippincott Williams & Wilkins, Inc.: Philadelphia, PA, USA, 2008. [Google Scholar]
- Cho, S.Y.; Paik, I.Y.; Woo, J.H.; Kim, K.S. The effects of BCAA and additional OKG or albumin supplements on blood fatigue factors and energy substrates. Korean J. Sport Sci. 2004, 15, 1–10. [Google Scholar]
- Everse, J.; Kaplan, N.O. Mechanism a of action and biological function of various dehydrogenease isozymes. In Isozymes Physiological Function; Markert, C.L., Ed.; Academic Press: New York, NY, USA, 1975; pp. 29–44. [Google Scholar]
- Hooloszy, J.O.; Booth, F.W. Biochemical adaptation to endurance exercise in muscle. Ann. Rev. Physiol. 1976, 22, 623–627. [Google Scholar] [CrossRef]
- Apple, P.F.; Rogers, M.A. Skeletal muscle lactate dehydrogenase isozyme alterations in men and women marathon runners. J. Applex Physiol. 1986, 61, 477–481. [Google Scholar] [CrossRef]
- Reznick, A.Z.; Witt, E.; Matsumoto, M.; Packer, L. Vitamin E inhibits protein oxidation in skeletal muscle of resting and exercise rats. Biochem. Biophys. Res. Commun. 1992, 189, 801–806. [Google Scholar] [CrossRef]
- Jun, Y.K.; Lee, K.H. Effect of different methods of recovery after high strength aerobic exercise on antioxidant enzymes. Korean J. Phys. Educ. Sci. 2014, 23, 1127–1135. [Google Scholar]
- Jaworski, C.A. Medical concerns of marathons. Curr. Sports Med. Rep. 2005, 4, 137–143. [Google Scholar] [CrossRef]
- Sorichter, S.; Puschendorf, B.; Mair, J. Skeletal muscle injury induced by eccentric muscle action: Muscle proteins as markers of muscle fiber injury. Exerc. Immunol. Rev. 1999, 5, 5–21. [Google Scholar]
- McIntyre, K.W.; Shuster, D.J.; Gillooly, K.M.; Warrier, R.R.; Connaughton, S.E.; Hall, L.B.; Arp, L.H.; Gately, M.K.; Magram, J. Reduced incidence and severity of collagen-induced arthritis in interleukin-12-deficient mice. Eur. J. Immunol. 1996, 26, 2933–2938. [Google Scholar] [CrossRef]
- Howatson, G.; Hoad, M.; Goodall, S.; Tallent, J.; Bell, P.G.; French, D.N. Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: A randomized, double-blind, placebo controlled study. J. Int. Soc. Sports Nutr. 2013, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, K.; Koba, T.; Hamada, K.; Sakurai, M.; Higuchi, T.; Miyata, H. Branched-chain amino acid supplementation attenuates muscle soreness, muscle damage and inflammation during an intensive training program. J. Sports Med. Phys. Fit. 2009, 49, 424–431. [Google Scholar]
- Brancaccio, P.; Lippi, G.; Maffulli, N. Biochemical markers of muscular damage. Clin. Chem. Lab. Med. 2010, 48, 757–767. [Google Scholar] [CrossRef]
Groups (n) | Age (year) | Height (cm) | Weight (kg) | Body Fat (%) | SBP (mmHg) | DBP (mmHg) | Shuttle Run Round Trip Times (time) |
---|---|---|---|---|---|---|---|
CG (n = 10) | 20.50 ± 2.01 | 173.31 ± 2.97 | 71.52 ± 10.16 | 16.46 ± 3.49 | 121.50 ± 3.37 | 81.00 ± 6.14 | 83.80 ± 7.00 |
WEG (n = 10) | 20.09 ± 2.07 | 174.61 ± 6.39 | 73.25 ± 10.46 | 17.25 ± 2.96 | 122.00 ± 3.49 | 80.50 ± 5.98 | 88.10 ± 7.82 |
DSWEG (n = 10) | 20.70 ± 2.11 | 173.94 ± 2.74 | 73.42 ± 9.59 | 18.42 ± 2.89 | 122.50 ± 3.53 | 79.50 ± 7.24 | 88.80 ± 7.13 |
Stage | Treatment Method | Time (min) |
---|---|---|
Warm-up | Floating (floating belts on wrists and ankles) | 2 |
Lower body | Ankle stretch (left, right) | 5 |
Toe stretching (left, right) | ||
Foot pressure (left, right) | ||
Knee stretching (left, right) | ||
Gastrocnemius massage | 5 | |
Hamstring massage | ||
Holding your feet and rock them up and down | ||
Upper body | Wrist stretch (left, right) | 3 |
Finger stretch (left, right) | ||
Palm pressure (left, right) | ||
Arm stretch (left, right) | ||
Shoulder stretch (left, right) | ||
Fore-arm massage | 3 | |
Upper arm massage | ||
Holding your arms and rocking them up and down | ||
Back | Neck massage | 2 |
Back massage | ||
Body as a whole | Stimulation of arms, legs, and sides (left, right) | 2 |
Keeping your back up | ||
Cool-down | Floating (floating belts on wrists and ankles) | 3 |
Total | 25 |
Stage (Numbers) | Period (s) | Speed (km/h) |
---|---|---|
Level 1 (7) | 9.0 | 8.5 |
Level 2 (7) | 8.5 | 9.0 |
Level 3 (8) | 8.0 | 9.5 |
Level 4 (8) | 7.6 | 10.0 |
Level 5 (8) | 7.2 | 10.5 |
Level 6 (9) | 6.9 | 11.0 |
Level 7 (9) | 6.6 | 11.5 |
Level 8 (10) | 6.3 | 12.0 |
Level 9 (10) | 6.0 | 12.5 |
Level 10 (10) | 5.8 | 13.0 |
Level 11 (11) | 5.5 | 13.5 |
Level 12 (12) | 5.3 | 14.0 |
Level 13 (13) | 5.1 | 14.5 |
Level 14 (14) | 5.0 | 15.0 |
Level 15 (15) | 4.8 | 15.5 |
Level 16 (16) | 4.7 | 16.0 |
Level 17 (17) | 4.5 | 16.5 |
Level 18 (18) | 4.4 | 17.0 |
Level 19 (19) | 4.2 | 17.5 |
Level 20 (20) | 4.1 | 18.0 |
Item | Groups | Test | Source | F-Value | |||
---|---|---|---|---|---|---|---|
Pre-Exercise | Post-Exercise | Post-Treatment | |||||
Glucose (mg/dL) | CG | 95.30±10.49 | 102.20 ± 15.99 | 101.50 ± 12.40 | Test | 2.132 | |
WEG | 96.50 ± 9.05 | 103.00 ± 18.79 | 99.30 ± 13.40 | Group | 0.917 | ||
DWEG | 91.70 ± 9.92 | 98.70 ± 13.46 | 95.23 ± 15.13 $ | Group × Test | 0.130 | ||
Lactate acid (mmol/L) | CG | 1.93 ± 0.35 | 14.29 ± 2.26 | 10.09 ± 2.34 | Test | 163.629 | *** |
WEG | 1.83 ± 0.40 | 13.85 ± 1.09 | 8.69 ± 2.65 $ | Group | 1.031 | ||
DWEG | 2.11 ± 0.39 | 17.44 ± 3.93 | 4.72 ± 2.57 # | Group × Test | 13.307 | *** | |
Ammonia (umol/L) | CG | 23.20 ± 2.78 | 53.30 ± 6.07 | 44.30 ± 4.62 | Test | 176.681 | *** |
WEG | 21.50 ± 3.37 | 50.70 ± 6.94 | 39.60 ± 7.64 $ | Group | 3.383 | * | |
DWEG | 24.50 ± 4.67 | 52.82 ± 5.65 | 28.80 ± 4.58 # | Group × Test | 22.487 | *** | |
LDH (U/L) | CG | 199.50 ± 32.22 | 258.20 ± 29.93 | 247.50 ± 35.69 | Test | 12.196 | ** |
WEG | 189.80 ± 34.38 | 249.50 ± 31.92 | 234.30 ± 33.92 | Group | 6.390 | ** | |
DWEG | 178.40 ± 34.81 | 252.30 ± 21.83 | 158.80 ± 31.77 # | Group × Test | 9.972 | *** |
Item | Groups | Test | Source | F-Value | |||
---|---|---|---|---|---|---|---|
Pre-Exercise | Post-Exercise | Post-Treatment | |||||
CK(U/L) | CG | 175.00 ± 37.16 | 236.80 ± 62.58 | 231.90 ± 61.00 | Test | 14.867 | *** |
WEG | 185.60 ± 35.31 | 251.00 ± 31.36 | 210.90 ± 18.08 $ | Group | 0.208 | ||
DWEG | 180.00 ± 33.71 | 267.80 ± 37.50 | 171.90 ± 28.51 # | Group × Test | 8.582 | *** | |
AST(U/L) | CG | 20.10 ± 3.72 | 24.90 ± 5.23 | 28.10 ± 5.87 | Test | 25.793 | *** |
WEG | 19.30 ± 4.11 | 27.20 ± 3.35 | 25.20 ± 3.25 $ | Group | 1.547 | ||
DWEG | 20.30 ± 4.05 | 28.50 ± 4.14 | 16.80 ± 2.44 # | Group × Test | 26.831 | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, N.-I.; Kim, S.-J.; Jang, J.-H.; Shin, W.-s.; Eum, H.-j.; Kim, B.; Choi, A.; Lee, S.-S. Changes in Fatigue Recovery and Muscle Damage Enzymes after Deep-Sea Water Thalassotherapy. Appl. Sci. 2020, 10, 8383. https://doi.org/10.3390/app10238383
Kim N-I, Kim S-J, Jang J-H, Shin W-s, Eum H-j, Kim B, Choi A, Lee S-S. Changes in Fatigue Recovery and Muscle Damage Enzymes after Deep-Sea Water Thalassotherapy. Applied Sciences. 2020; 10(23):8383. https://doi.org/10.3390/app10238383
Chicago/Turabian StyleKim, Nam-Ik, Sagn-Jin Kim, Jee-Hun Jang, Woon-seob Shin, Hyok-ju Eum, Buom Kim, Ahnryul Choi, and Sang-Sik Lee. 2020. "Changes in Fatigue Recovery and Muscle Damage Enzymes after Deep-Sea Water Thalassotherapy" Applied Sciences 10, no. 23: 8383. https://doi.org/10.3390/app10238383
APA StyleKim, N. -I., Kim, S. -J., Jang, J. -H., Shin, W. -s., Eum, H. -j., Kim, B., Choi, A., & Lee, S. -S. (2020). Changes in Fatigue Recovery and Muscle Damage Enzymes after Deep-Sea Water Thalassotherapy. Applied Sciences, 10(23), 8383. https://doi.org/10.3390/app10238383