High-Quality, InN-Based, Saturable Absorbers for Ultrafast Laser Development
Abstract
:1. Introduction
2. Material Characterization
3. Pulsed Laser Operation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hirao, M.; Tsuji, S.; Mizuishi, K.; Doi, A.; Nakamura, M. Long wavelength InGaAsP/InP lasers for optical fiber communication systems. J. Opt. Commun. 1980, 1, 10–14. [Google Scholar] [CrossRef]
- Li, Z.; Heidt, A.M.; Simakov, N.; Jung, Y.; Daniel, J.M.O.; Alam, S.U.; Richardson, D.J. Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050 nm window. Opt. Express 2013, 21, 26450–26455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Wise, F. Recent advances in fibre lasers for nonlinear microscopy. Nat. Photonics 2013, 7, 875–882. [Google Scholar] [CrossRef]
- Van, V.; Ibrahim, T.A.; Absil, P.P.; Johnson, F.G.; Grover, R.; Ho, P.-T. Optical signal processing using nonlinear semiconductor microring resonators. J. Sel. Top. Quantum Electron. 2002, 8, 705–713. [Google Scholar] [CrossRef]
- Gattass, R.; Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2008, 2, 219–225. [Google Scholar] [CrossRef]
- Toor, F.; Jackson, S.; Shang, X.; Arafin, S.; Yang, H. Mid-infrared Lasers for medical applications: Introduction to the feature issue. Biomed. Opt. Express 2018, 9, 6255–6257. [Google Scholar] [CrossRef]
- Shirk, M.D.; Molian, P.A. A review of ultrashort pulsed laser ablation of materials. J. Laser Appl. 1998, 10, 18. [Google Scholar] [CrossRef]
- Taccheo, S. Fiber lasers for medical diagnostics and treatments: State of the art, challenges and future perspectives. In Proceedings of the Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVII, San Francisco, CA, USA, 23 March 2017. [Google Scholar]
- Dong, L.; Samson, B. Military applications of lasers. In Fiber Lasers: Basics, Technology, and Applications; CRC Press: Boca Raton, FL, USA, 2017; pp. 299–311. [Google Scholar]
- Anderberg, B.; Wolbarsht, M.L. Laser Weapons: The Dawn of a New Military Age, 1st ed.; Springer US Publisher: New York, NY, USA, 1992; p. 244. [Google Scholar]
- Garmire, E.; Yariv, A. Laser mode-locking with saturable absorbers. IEEE J. Quantum Electron. 1967, 3, 222–226. [Google Scholar] [CrossRef]
- Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838. [Google Scholar] [CrossRef]
- Keller, U.; Weingarten, K.J.; Kartner, F.X. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 435–453. [Google Scholar] [CrossRef] [Green Version]
- Haiml, M.; Grange, R.; Keller, U. Optical characterization of semiconductor saturable absorbers. Appl. Phys. B 2004, 79, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Popa, D.; Sun, Z.; Hasan, T.; Cho, W.B.; Wang, F.; Torrisi, F.; Ferrari, A.C. 74-fs nanotube-mode-locked fiber laser. Appl. Phys. Lett. 2012. [Google Scholar] [CrossRef]
- Tang, D.Y.; Zhao, L.M. Generation of 47-fs directly from and erbium-doped fiber laser. Opt. Lett. 2007, 32, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Haefner, C.L.; Bayramian, A.; Betts, S.; Bopp, R.; Cupal, S.J.; Drouin, M.; Erlandson, A.; Horáček, J.; Horner, J.; Jarboe, J.; et al. High average power, diode pumped petawatt laser systems: A new generation of lasers enabling precision science and commercial applications. In Proceedings of the SPIE Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers III, Prague, Czech Republic, 26 June 2017. [Google Scholar]
- Zhang, B.; Liu, J.; Wang, C.; Yang, K.; Lee, C.; Zhang, H.; He, J. Recent progress in 2D material-based saturable absorbers for all solid-state pulsed bulk lasers. Laser Photonics Rev. 2020, 14, 1900240. [Google Scholar] [CrossRef]
- Ahmad, H.; Safaei, R.; Rezayi, M.; Amiri, I.S. Novel D-shaped fiber fabrication method for saturable absorber application in the generation of ultra-short pulses. Laser Phys. Lett. 2017, 14, 085001. [Google Scholar] [CrossRef]
- James, R.B.; Smith, D.L. Dependence of the saturation intensity of p-type germanium on impurity concentration and residual absorption at 10.59 μm. Solid State Commun. 1980, 33, 395–398. [Google Scholar] [CrossRef]
- Tao, L.; Chen, K.; Chen, Z.; Chen, W.; Gui, X.; Chen, H.; Li, X.; Xu, J.B. Centimeter-Scale CVD growth of highly crystalline single-layer MoS2 film with spatial homogeneity and the visualization of grain boundaries. ACS Appl. Mater. Interfaces 2017, 9, 12073–12078. [Google Scholar] [CrossRef]
- Potin, V.; Ruterana, P.; Nouet, G.; Pond, R.C.; Morkoç, H. Mosaic growth of GaN on (0001) sapphire: A high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to high-angle grain boundaries. Phys. Rev. B 2000, 61, 5587–5599. [Google Scholar] [CrossRef]
- Ruterana, P.; Potin, V.; Barbaray, B.; Nouet, G. Growth defects in GaN layers on top of (0001) sapphire: A geometrical investigation of the misfit effect. Philos. Mag. A 2000, 80, 937–954. [Google Scholar] [CrossRef]
- Ruterana, P.; Syrkin, A.L.; Monroy, E.; Valcheva, E.; Kirilov, K. The microstructure and properties of InN layers. Phys. Status Solidi C 2010, 7, 1301–1304. [Google Scholar] [CrossRef]
- Monteagudo-Lerma, L.; Valdueza-Felip, S.; Núñez-Cascajero, A.; Ruiz, A.; González-Herráez, M.; Monroy, E.; Naranjo, F.B. Morphology and arrangement of InN nanocolumns deposited by radio-frequency sputtering: Effect of the buffer layer. J. Cryst. Growth 2016, 434, 13–18. [Google Scholar] [CrossRef]
- Naranjo, F.B.; Kandaswamy, P.K.; Valdueza-Felip, S.; Calvo, V.; González-Herráez, M.; Martín-López, S.; Corredera, P.; Méndez, J.A.; Mutta, G.R.; Lacroix, B.; et al. Nonlinear absorption of InN/InGaN multiple-quantum-well structures at optical telecommunication wavelengths. Appl. Phys. Lett. 2011, 98, 031902. [Google Scholar] [CrossRef] [Green Version]
- Bhuiyan, A.G.; Hashimoto, A.; Yamamoto, A. Indium nitride (InN): A review on growth, characterization, and properties. Appl. Phys. 2003, 94, 2779–2804. [Google Scholar] [CrossRef]
- Wu, J.; Walukiewicz, W.; Yu, K.M.; Ager, J.W., III; Haller, E.E.; Lu, H.; Schaff, W.J.; Saito, Y.; Nanishi, Y. Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 2002, 80, 3967. [Google Scholar] [CrossRef]
- Jiménez-Rodríguez, M.; Monroy, E.; González-Herráez, M.; Naranjo, F.B. Ultrafast fiber laser using InN as saturable absorber mirror. J. Light. Technol. 2018, 36, 2175–2182. [Google Scholar] [CrossRef]
- Monroy, L.; Jiménez-Rodríguez, M.; Ruterana, P.; Monroy, E.; González-Herráez, M.; Naranjo, F.B. Effect of the residual doping on the performance of InN epilayers as saturable absorbers for ultrafast lasers at 1.55 µm. Opt. Mater. Express 2019, 9, 2785–2792. [Google Scholar] [CrossRef]
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Viezbicke, B.D.; Patel, S.; Davis, B.E.; Birnie, D.P. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi B 2015, 252, 1700–1710. [Google Scholar] [CrossRef]
- Wu, J.; Walukiewicz, W.; Li, S.X.; Armitage, R.; Ho, J.C.; Weber, E.R.; Haller, E.E.; Lu, H.; Schaff, W.J.; Barcz, A.; et al. Effects of electron concentration on the optical absorption edge of InN. Appl. Phys. Lett. 2004, 84, 2805–2807. [Google Scholar] [CrossRef] [Green Version]
- Hsu, L.; Jones, R.E.; Li, S.X.; Yu, K.M.; Walukiewicz, W. Electron mobility in InN and III-alloys. J. Appl. Phys. 2007, 102, 1–6. [Google Scholar] [CrossRef]
- Sheik-bahae, M.; Said, A.A.; Wei, T.H.; Hagan, D.J.; Vanstryland, E.W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Sel. Top. Quantum Electron. 1990, 26, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Arnaud, J.A.; Hubbard, W.M.; Mandeville, G.D.; de la Clavière, B.; Franke, E.A.; Franke, J.M. Technique for fast measurement of gaussian laser beam parameters. Appl. Opt. 1971, 10, 2775–2776. [Google Scholar] [CrossRef]
- de Araújo, M.A.; Silva, R.; de Lima, E.; Pereira, D.P.; de Oliveira, P.C. Measurement of Gaussian laser beam radius using the knife-edge technique: Improvement on data analysis. Appl. Opt. 2009, 48, 393–396. [Google Scholar] [CrossRef]
- Chapple, P.B.; Staromlynska, J.; Hermann, J.A.; Mckay, T.J.; Mcduff, R.G. Single-Beam Z-scan: Measurement techniques and analysis. J. Nonlinear Opt. Phys. Mater. 1997, 6, 251–293. [Google Scholar] [CrossRef]
- Abidin, M.S.; Muhammad, A.S.; Rashid, S.A.; Mahdi, M.A. Frequency and duty cycle modulation optimization in minimizing thermal accumulation effect in Z-scan measurement with high-repetition-rate laser. Jpn. J. Appl. Phys. 2014, 53. [Google Scholar] [CrossRef] [Green Version]
- Gallazzi, F.; Jimenez-Rodriguez, M.; Monroy, E.; Corredera, P.; González-Herráez, M.; Naranjo, F.B.; Castañón, J.D.A. Megawatt peak-power femtosecond ultralong ring fibre laser with InN SESAM. In Proceedings of the Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, Munich, Germany, 23–27 June 2019. [Google Scholar]
- Tamura, K.; Ippen, E.P.; Haus, H.A.; Nelson, L.E. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Opt. Lett. 1993, 18, 1080–1082. [Google Scholar] [CrossRef]
- Turitsyn, S.K.; Bale, B.G.; Fedoruk, M.P. Dispersion-managed solitons in fibre systems and lasers. Phys. Rep. 2012, 521, 135–203. [Google Scholar] [CrossRef]
- Jiménez-Rodríguez, M.; Monteagudo-Lerma, L.; Monroy, E.; González-Herráez, M.; Naranjo, F.B. Widely power-tunable polarization-independent ultrafast mode-locked fiber laser using bulk InN as saturable absorber. Opt. Express 2017, 25, 5366–5375. [Google Scholar] [CrossRef] [Green Version]
- Diels, J.M.; Fontaine, J.J.; McMichael, I.A.; Simoni, F. Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy. Appl. Opt. 1985, 24, 1270–1282. [Google Scholar] [CrossRef]
- Campagnola, P.J.; Wei, M.; Lewis, A.; Loew, L.M. High-Resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys. J. 1999, 77, 3341–3349. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, N.H. Femtosecond laser micromachining: Current status and applications. Riken Rev. 2003, 50, 1–10. [Google Scholar]
- Woodward, R.I.; Kelleher, E.J.R. 2D saturable absorbers for fibre lasers. Appl. Sci. 2015, 5, 1440–1456. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Gao, Q.; Zheng, Y.; Mao, D.; Zhao, J. Recent progress of pulsed fiber lasers based on transition-metal dichalcogenides and black phosphorus saturable absorbers. Nanophotonics 2020. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Yin, K.; Wang, C.; You, J.; Ouyang, H.; Miao, R.; Zhang, C.; Wei, K.; Li, H.; Chen, H.; et al. Ultrafast fiber lasers mode-locked by two-dimensional materials: Review and prospect. Photonics Res. 2020, 8, 78–90. [Google Scholar] [CrossRef]
- Autere, A.; Jussila, H.; Dai, Y.; Wang, Y.; Lipsanen, H.; Sun, Z. Nonlinear optics with 2D layered materials. Adv. Mater. 2018, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eibl, M.; Weng, D.; Hakert, H.; Kolb, J.P.; Pfeiffer, T.; Hundt, J.E.; Huber, R.; Karpf, S. Wavelength agile multi-photon microscopy with a fiber amplified diode laser. Biomed. Opt. Express 2018, 9, 6273–6282. [Google Scholar] [CrossRef]
- Vogel, A.; Venugopalan, V. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 2003, 103, 577–644. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Wang, O.; Chen, Y.; Wang, Z.; Wee, A.T.S. Van der Waals stacked 2D layered materials for optoelectronics. 2D Mater. 2016, 3. [Google Scholar] [CrossRef]
- Bao, Q.; Zhang, H.; Wang, Y.; Ni, Z.; Yan, Y.; Shen, Z.X.; Loh, K.P.; Tang, D.Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083. [Google Scholar] [CrossRef]
- Sotor, J.; Pasternak, I.; Krajewska, A.; Strupinski, W.; Sobon, G. Sub-90 fs a stretched-pulse mode-locked fiber laser based on a graphene saturable absorber. Opt. Express 2015, 23, 27503–27508. [Google Scholar] [CrossRef]
- Yan, P.; Lin, R.; Ruan, S.; Liu, A.; Chen, H.; Zheng, Y.; Chen, S.; Guo, C.; Hu, J. A practical topological insulator saturable absorber for mode-locked fiber laser. Sci Rep. 2005, 5, 8690. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, X.; Liu, M.; Zhao, N.; Luo, A.; Luo, Z.; Xu, W.; Zhang, H.; Zhao, C.; Wen, S. Femtosecond pulse generation from a topological insulator mode-locked fiber laser. Opt. Express 2014, 22, 6868–6873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, J.; Park, J.; Lee, J.; Jhon, Y.M.; Lee, J.H. Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber. Opt. Express 2016, 24, 10575–10589. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.J.; Liu, M.L.; Yang, Y.; Hou, H.; Ma, G.; Lei, M.; Wei, Z.Y. Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration. Nanotechnology 2018, 29, 1–12. [Google Scholar] [CrossRef]
- Liu, W.J.; Liu, M.L.; Liu, B.; Quhe, R.G.; Lei, M.; Fang, S.B.; Teng, H.; Wei, Z.Y. Nonlinear optical properties of MoS2-WS2 heterostructure in fiber lasers. Opt. Express 2019, 27, 6689–6699. [Google Scholar] [CrossRef]
- Sotor, J.; Sobon, G.; Macherzynski, W.; Paletko, P.; Abramski, K.M. Black phosphorus saturable absorber for ultrashort pulse generation. Appl. Phys. Lett. 2015, 107, 051108. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Hu, G.; Zhang, M.; Hu, Y.; Albrow-Owen, T.; Howe, R.C.T.; Wu, T.; Wu, Q.; Zheng, Z.; Hasan, T. 102 fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser. Opt. Express 2018, 26, 12506–12513. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, S.; Liang, W.; Luo, S.; He, Z.; Ge, Y.; Wang, H.; Cao, R.; Zhang, F.; Wen, Q.; et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev. 2018, 12, 1–10. [Google Scholar]
- Guo, B.; Wang, S.; Wu, Z.; Wang, Z.; Wang, D.; Huang, H.; Zhang, F.; Ge, Y.; Zhang, H. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Express 2018, 26, 22750–22760. [Google Scholar] [CrossRef]
- Pumera, M.; Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus. Adv. Mater. 2017, 29, 1605299. [Google Scholar] [CrossRef]
Sample | ||||
---|---|---|---|---|
S0 | 357.2 | 27.8 | 44.5 | 160 |
S0′ | 383.8 | 12.7 | 43.3 | 340 |
S1 | 756.6 | 16.4 | 39.6 | 241 |
S2 | 831.5 | 2.81 | 20.1 | 715 |
SA | λ (nm) | Δλ (nm) | τpulse (fs) | MD (%) 1 | Isat (MW/cm2) 2 | Pp (kW) 3 | Ref. |
---|---|---|---|---|---|---|---|
Graphene | 1545 | 48 | 88 | 11 | 2 × 103 | 0.57 | [55] |
TI–Bi2Se3 | 1557.5 | 4.3 | 660 | 3.9 | 12 | 0.22 | [57] |
TMD–WSe2 | 1557.4 | 25.8 | 163.5 | 21.9 | 15.4 | 1.79 | [59] |
TMD–MoS2 | 1560 | 24.4 | 154 | 19.12 | 1.361 | 1.12 | [60] |
BP | 1555 | 40 | 102 | 10 | 15 | 0.49 | [62] |
MXene | 1555 | 22.2 | 159 | 24 | 39.1 × 103 | 2.6 | [63] |
Bismuthene | 1561 | 14.4 | 193 | 5.6 | 48.2 | 3.28 | [64] |
InN | 1562 | 22.6 | 166.2 | 30.6 | 1.6 × 103 | 22.3 | [29] |
InN | 1569 | 40 | 134.4 | 17.3 | 4.4 × 103 | 28.2 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monroy, L.; Jiménez-Rodríguez, M.; Monroy, E.; González-Herráez, M.; B. Naranjo, F. High-Quality, InN-Based, Saturable Absorbers for Ultrafast Laser Development. Appl. Sci. 2020, 10, 7832. https://doi.org/10.3390/app10217832
Monroy L, Jiménez-Rodríguez M, Monroy E, González-Herráez M, B. Naranjo F. High-Quality, InN-Based, Saturable Absorbers for Ultrafast Laser Development. Applied Sciences. 2020; 10(21):7832. https://doi.org/10.3390/app10217832
Chicago/Turabian StyleMonroy, Laura, Marco Jiménez-Rodríguez, Eva Monroy, Miguel González-Herráez, and Fernando B. Naranjo. 2020. "High-Quality, InN-Based, Saturable Absorbers for Ultrafast Laser Development" Applied Sciences 10, no. 21: 7832. https://doi.org/10.3390/app10217832