First In-Situ Measurements of Plume Chemistry at Mount Garet Volcano, Island of Gaua (Vanuatu)
Abstract
1. Introduction
2. The Vanuatu Island Arc
The 2009–2010 Eruption of Mount Garet (Gaua)
3. Materials and Methods
4. Results
Volcanic Gas Composition
5. Discussion
5.1. Along-Arc and Inter-Arc Volcanic Gas CO2/ST Variations
5.2. Implications for the Vanuatu Arc Volatile Budget
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kerrick, D.M.; Connolly, J.A.D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 2001, 411, 293–296. [Google Scholar] [CrossRef]
- Kerrick, D.; Connolly, J. Metamorphic devolatilization of subducted oceanic metabasalts: Implications for seismicity, arc magmatism and volatile recycling. Earth Planet. Sci. Lett. 2001, 189, 19–29. [Google Scholar] [CrossRef]
- Schmidt, M.; Poli, S. Devolatilization during Subduction. In Treatise on Geochemistry, The Crust, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 669–701. [Google Scholar]
- Plank, T.; Langmuir, C.H. Tracing trace elements from sediment input to volcanic output at subduction zones. Nature 1993, 362, 739–743. [Google Scholar] [CrossRef]
- Plank, T.; Langmuir, C.H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 1998, 145, 325–394. [Google Scholar] [CrossRef]
- Plank, T. The Chemical Composition of Subducting Sediments. In Treatise on Geochemistry, The Crust, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 4, pp. 607–629. [Google Scholar]
- Plank, T.; Manning, C.E. Subducting carbon. Nat. Cell Biol. 2019, 574, 343–352. [Google Scholar] [CrossRef]
- Alt, J.C.; Shanks, W.C.; Jackson, M.C. Cycling of sulfur in subduction zones: The geochemistry of sulfur in the Mariana Island Arc and back-arc trough. Earth Planet. Sci. Lett. 1993, 119, 477–494. [Google Scholar] [CrossRef]
- Jarrard, R.D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem. Geophys. Geosyst. 2003, 4, 8905. [Google Scholar] [CrossRef]
- Rüpke, L. Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett. 2004, 223, 17–34. [Google Scholar] [CrossRef]
- Alt, J.C.; Garrido, C.J.; Shanks, W.C.; Turchyn, A.V.; Padrón-Navarta, J.A.; Sánchez-Vizcaíno, V.L.; Pugnaire, M.T.G.; Marchesi, C. Recycling of water, carbon, and sulfur during subduction of serpentinites: A stable isotope study of Cerro del Almirez, Spain. Earth Planet. Sci. Lett. 2012, 327–328, 50–60. [Google Scholar] [CrossRef]
- Alt, J.C.; Schwarzenbach, E.M.; Früh-Green, G.L.; Shanks, W.C.P.; Bernasconi, S.M.; Garrido, C.J.; Crispini, L.; Gaggero, L.; Padrón-Navarta, J.A.; Marchesi, C. The role of serpentinites in cycling of carbon and sulfur: Seafloor serpentinization and subduction metamorphism. Lithos 2013, 178, 40–54. [Google Scholar] [CrossRef]
- Saal, A.E.; Hauri, E.; Langmuir, C.H.; Perfit, M.R. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 2002, 419, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Freundt, A.; Grevemeyer, I.; Rabbel, W.; Hansteen, T.H.; Hensen, C.; Wehrmann, H.; Kutterolf, S.; Halama, R.; Frische, M. Volatile (H2O, CO2, Cl, S) budget of the Central American subduction zone. Int. J. Earth. Sci. 2014, 103, 2101–2127. [Google Scholar] [CrossRef]
- Aiuppa, A.; Fischer, T.P.; Plank, T.; Robidoux, P.; Di Napoli, R. Along-arc, inter-arc and arc-to-arc variations in volcanic gas CO2/S T ratios reveal dual source of carbon in arc volcanism. Earth Sci. Rev. 2017, 168, 24–47. [Google Scholar] [CrossRef]
- Andres, R.J.; Kasgnoc, A.D. A time-averaged inventory of subaerial volcanic sulfur emissions. J. Geophys. Res. 1998, 103, 25251–25261. [Google Scholar] [CrossRef]
- Fischer, T.P. Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc volcanoes. Geochem. J. 2008, 42, 21–38. [Google Scholar] [CrossRef]
- Burton, M.R.; Sawyer, G.M.; Granieri, D. Deep Carbon Emissions from Volcanoes. Rev. Miner. Geochem. 2013, 75, 323–354. [Google Scholar] [CrossRef]
- Werner, C.; Cynthia Fischer, T.P.; Aiuppa, A.; Edmonds, M.; Cardellini, C.; Carn, S.; Chiodini, G.; Cottrell, E.; Burton, M.; Shinohara, H.; et al. Carbon Dioxide Emissions from Subaerial Volcanic Regions. In Deep Carbon: Past to Present; Orcutt, B.N., Daniel, I., Dasgupta, R., Eds.; Cambridge University Press (CUP): Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Fischer, T.; Arellano, S.; Carn, S.A.; Aiuppa, A.; Galle, B.; Allard, P.; Lopez, T.; Shinohara, H.; Kelly, P.; Werner, C.; et al. The emissions of CO2 and other volatiles from the world’s subaerial volcanoes. Sci. Rep. 2019, 9, 18716. [Google Scholar] [CrossRef]
- Aiuppa, A.; Fischer, T.P.; Plank, T.; Bani, P. CO2 flux emissions from the Earth’s most actively degassing volcanoes, 2005–2015. Sci. Rep. 2019, 9, 5442. [Google Scholar] [CrossRef]
- Moussallam, Y.; Oppenheimer, C.; Scaillet, B. On the relationship between oxidation state and temperature of volcanic gas emissions. Earth Planet. Sci. Lett. 2019, 520, 260–267. [Google Scholar] [CrossRef]
- Carn, S.A.; Fioletov, V.E.; McLinden, C.A.; Li, C.; Krotkov, N.A. A decade of global volcanic SO2 emissions measured from space. Sci. Rep. 2017, 7, 44095. [Google Scholar] [CrossRef]
- Aiuppa, A.; Federico, C.; Giudice, G.; Gurrieri, S. Chemical mapping of a fumarolic field: La Fossa Crater, Vulcano Island (Aeolian Islands, Italy). Geophys. Res. Lett. 2005, 32, L13309. [Google Scholar] [CrossRef]
- Shinohara, H. A new technique to estimate volcanic gas composition: Plume measurements with a portable multi-sensor system. J. Volcanol. Geotherm. Res. 2005, 143, 319–333. [Google Scholar] [CrossRef]
- Oppenheimer, C.; Fischer, T.P.; Scaillet, B. Volcanic Degassing: Process and Impact, 2nd ed.; Treatise on Geochemistry: Second Edition; Elsevier Ltd.: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Fischer, T.P.; Chiodini, G. Volcanic, Magmatic and Hydrothermal Gases. In The Encyclopedia of Volcanoes; Elsevier: Cambridge, MA, USA, 2015; Volume 2, pp. 779–797. [Google Scholar] [CrossRef]
- Aiuppa, A. Volcanic-Gas Monitoring. In Volcanism and Global Environmental Change; Cambridge University Press (CUP): Cambridge, UK, 2015; pp. 81–96. [Google Scholar] [CrossRef]
- Fischer, T.; Aiuppa, A. AGU Centennial Grand Challenge: Volcanoes and Deep Carbon Global CO2 Emissions from Subaerial Volcanism—Recent Progress and Future Challenges. Geochem. Geophys. Geosystems 2020, 21, 2019gc008690. [Google Scholar] [CrossRef]
- Oppenheimer, C.; Tsanev, V.I.; Braban, C.F.; Cox, R.A.; Adams, J.W.; Aiuppa, A.; Bobrowski, N.; Delmelle, P.; Barclay, J.; Mcgonigle, A.J.S. BrO formation in volcanic plumes. Geochim. Cosmochim. Acta 2006, 70, 2935–2941. [Google Scholar] [CrossRef]
- Métrich, N.; Allard, P.; Aiuppa, A.; Bani, P.; Bertagnini, A.; Shinohara, H.; Parello, F.; Di Muro, A.; Garaebiti, E.; Belhadj, O.; et al. Magma and Volatile Supply to Post-collapse Volcanism and Block Resurgence in Siwi Caldera (Tanna Island, Vanuatu Arc). J. Pet. 2011, 52, 1077–1105. [Google Scholar] [CrossRef]
- Woitischek, J.; Woods, A.W.; Edmonds, M.; Oppenheimer, C.; Aiuppa, A.; Pering, T.D.; Ilanko, T.; D’Aleo, R.; Garaebiti, E. Strombolian eruptions and dynamics of magma degassing at Yasur Volcano (Vanuatu). J. Volcanol. Geotherm. Res. 2020, 398, 106869. [Google Scholar] [CrossRef]
- Allard, P.; Aiuppa, A.; Bani, P.; Métrich, N.; Bertagnini, A.; Gauthier, P.-J.; Shinohara, H.; Sawyer, G.; Parello, F.; Bagnato, E.; et al. Prodigious emission rates and magma degassing budget of major, trace and radioactive volatile species from Ambrym basaltic volcano, Vanuatu island Arc. J. Volcanol. Geotherm. Res. 2016, 322, 119–143. [Google Scholar] [CrossRef]
- Allard, P.; Burton, M.; Sawyer, G.; Bani, P.; Burton, M.R. Degassing dynamics of basaltic lava lake at a top-ranking volatile emitter: Ambrym volcano, Vanuatu arc. Earth Planet. Sci. Lett. 2016, 448, 69–80. [Google Scholar] [CrossRef]
- Bani, P.; Oppenheimer, C.; Tsanev, V.I.; Carn, S.A.; Cronin, S.; Crimp, R.; Calkins, J.A.; Charley, D.; Lardy, M.; Roberts, T.R. Surge in sulphur and halogen degassing from Ambrym volcano, Vanuatu. Bull. Volcanol. 2009, 71, 1159–1168. [Google Scholar] [CrossRef]
- Bani, P.; Oppenheimer, C.; Allard, P.; Shinohara, H.; Tsanev, V.; Carn, S.; Lardy, M.; Garaebiti, E. First estimate of volcanic SO2 budget for Vanuatu island arc. J. Volcanol. Geotherm. Res. 2012, 211–212, 36–46. [Google Scholar] [CrossRef]
- Liu, E.J.; Aiuppa, A.; Alan, A.; Arellano, S.; Bitetto, M.; Bobrowski, N.; Carn, S.; Clarke, R.; Corrales, E.; de Moor, J.M.; et al. Aerial Strategies Advance Volcanic Gas Measurements at Inaccessible, Strongly Degassing Volcanoes. Sci. Adv. 2020, in press. [Google Scholar]
- Pelletier, B.; Calmant, S.; Pillet, R. Current tectonics of the Tonga–New Hebrides region. Earth Planet. Sci. Lett. 1998, 164, 263–276. [Google Scholar] [CrossRef]
- Calmant, S.; Pelletier, B.; Lebellegard, P.; Bevis, M.; Taylor, F.W.; Phillips, D.A. New insights on the tectonics along the New Hebrides subduction zone based on GPS results. J. Geophys. Res. Space Phys. 2003, 108, 2319–2339. [Google Scholar] [CrossRef]
- Ridge-Arc Collision: Timing and Deformation Determined by Leg 134 Drilling, Central New Hebrides Island Arc. In Proceedings of the Ocean Drilling Program, 134 Scientific Results, Tokyo, Japan, May 1994; Volume 134, pp. 609–621. [CrossRef]
- Fisher, M.; Crawford, A. Neogene Tectonic Evolution of the New Hebrides Island Arc: A Review Incorporating ODP Drilling Results. In Proceedings of the Ocean Drilling Program, 134 Scientific Results, Tokyo, Japan, May 1994; Volume 134, pp. 19–46. [Google Scholar] [CrossRef]
- Monzier, M.; Robin, C.; Eissen, J.-P.; Cotten, J. Geochemistry vs. seismo-tectonics along the volcanic New Hebrides Central Chain (Southwest Pacific). J. Volcanol. Geotherm. Res. 1997, 78, 1–29. [Google Scholar] [CrossRef]
- Robin, C.; Eissen, J.-P.; Monzier, M. Mafic pyroclastic flows at Santa Maria (Gaua) Volcano, Vanuatu: The caldera formation problem in mainly mafic island arc volcanoes. Terra Nova 1995, 7, 436–443. [Google Scholar] [CrossRef]
- Bani, P.; Boudon, G.; Balcone-Boissard, H.; Delmelle, P.; Quiniou, T.; Lefèvre, J.; Bule, E.G.; Hiroshi, S.; Lardy, M. The 2009–2010 eruption of Gaua volcano (Vanuatu archipelago): Eruptive dynamics and unsuspected strong halogens source. J. Volcanol. Geotherm. Res. 2016, 322, 63–75. [Google Scholar] [CrossRef]
- Mallick, D.I.J.; Ash, R.P. Geology of the southern Banks Islands. New Hebrides Geol. Surv. Reg. Rep. 1975, 33, 46. [Google Scholar]
- Beaumais, A. Géochimie de l’arc du Vanuatu: Evolution Spatio-Temporelle des Edifices Volcaniques et des Sources Mantelliques. Ph.D Thesis, Universite de Bretagne Occidentale, Brest, France, 2013; p. 310p. [Google Scholar]
- Tamburello, G. Ratiocalc: Software for processing data from multicomponent volcanic gas analyzers. Comput. Geosci. 2015, 82, 63–67. [Google Scholar] [CrossRef]
- Tamburello, G.; Agusto, M.; Caselli, A.T.; Tassi, F.; Vaselli, O.; Calabrese, S.; Rouwet, D.; Capaccioni, B.; Di Napoli, R.; Cardellini, C.; et al. Intense magmatic degassing through the lake of Copahue volcano, 2013–2014. J. Geophys. Res. Solid Earth 2015, 120, 6071–6084. [Google Scholar] [CrossRef]
- Moussallam, Y.; Tamburello, G.; Peters, N.; Apaza, F.; Schipper, C.I.; Curtis, A.; Aiuppa, A.; Masías, P.; Boichu, M.; Bauduin, S.; et al. Volcanic gas emissions and degassing dynamics at Ubinas and Sabancaya volcanoes; implications for the volatile budget of the central volcanic zone. J. Volcanol. Geotherm. Res. 2017, 343, 181–191. [Google Scholar] [CrossRef]
- Lages, J.; Chacón, Z.; Burbano, V.; Meza, L.; Arellano, S.; Liuzzo, M.; Giudice, G.; Aiuppa, A.; Bitetto, M.; López, C. Volcanic Gas Emissions along the Colombian Arc Segment of the Northern Volcanic Zone (CAS-NVZ): Implications for volcano monitoring and volatile budget of the Andean Volcanic Belt. Geochem. Geophys. Geosyst. 2019, 20, 5057–5081. [Google Scholar] [CrossRef]
- Roberts, T.; Saffell, J.; Oppenheimer, C.; Lurton, T. Electrochemical sensors applied to pollution monitoring: Measurement error and gas ratio bias—A volcano plume case study. J. Volcanol. Geotherm. Res. 2014, 281, 85–96. [Google Scholar] [CrossRef]
- Chase, M.W. National Institute of Standards and Technology (U.S.). In NIST-JANAF Thermochemical Tables. American Chemical Society; American Institute of Physics for the National Institute of Standards and Technology: Washington, DC, USA; Woodbury, NY, USA, 1998. [Google Scholar]
- Stull, D.R.; Westrum, E.F.; Sinke, G.C. The Chemical Thermodynamics of organic Compounds; Wiley: Hoboken, NJ, USA, 1969. [Google Scholar]
- Moussallam, Y.; Peters, N.; Masías, P.; Apaza, F.; Barnie, T.; Schipper, C.I.; Curtis, A.; Tamburello, G.; Aiuppa, A.; Bani, P.; et al. Magmatic gas percolation through the old lava dome of El Misti volcano. Bull. Volcanol. 2017, 79, 46. [Google Scholar] [CrossRef] [PubMed]
- Frost, B.R. Introduction to oxygen fugacity and its petrologic importance. Rev. Mineral. Geochem. 1991, 25, 1–9. [Google Scholar]
- Symonds, R.; Gerlach, T.; Reed, M. Magmatic gas scrubbing: Implications for volcano monitoring. J. Volcanol. Geotherm. Res. 2001, 108, 303–341. [Google Scholar] [CrossRef]
- Gerlach, T.M.; McGee, K.A.; Doukas, M.P. Emission rates of CO2, SO2, and H2S, scrubbing, and preeruption excess volatiles at Mount St. Helens, 2004–2005. US Geol. Surv. Prof. Pap. 2008, 1750, 543–572. [Google Scholar] [CrossRef]
- Aiuppa, A.; Robidoux, P.; Tamburello, G.; Condé, V.; Galle, B.; Avard, G.; Bagnato, E.; De Moor, J.; Martinez, M.; Munoz, A. Gas measurements from the Costa Rica–Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry. Earth Planet. Sci. Lett. 2014, 407, 134–147. [Google Scholar] [CrossRef]
- Von Huene, R.; Scholl, D.W. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust at convergent ocean margins. Rev. Geophys. 1991, 29, 279–316. [Google Scholar] [CrossRef]
- David, W.; Peate, J.A.P.; Hawkesworth, C.J.; Colley, H.; Edwards, C.M.H.; Hirose, K. Geochemical variations in Vanuatu arc lavas: The role of subducted material and a variable mantle wedge composition. J. Mol. Struct. 1997, 38, 1331–1358. [Google Scholar] [CrossRef]
- Shreve, T.; Grandin, R.; Boichu, M.; Garaebiti, E.; Moussallam, Y.; Ballu, V.; Delgado, F.; Leclerc, F.; Vallée, M.; Henriot, N.; et al. From prodigious volcanic degassing to caldera subsidence and quiescence at Ambrym (Vanuatu): The influence of regional tectonics. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Carn, S.A. Multi-Satellite Volcanic Sulfur Dioxide L4 Long-Term Global Database V2, Version 2; Goddard Earth Science Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2015. Available online: Ftp://measures.gsfc.nasa.gov/data/s4pa/SO2/MSVOLSO2L4.2/ (accessed on 16 June 2016).
Gas Species | Molar Ratio x/SO2 | R2 | Error (±) | SO2 Max (Plume Marker; in ppm) | Nr. of Samples |
---|---|---|---|---|---|
H2 | 0.04 | 0.73 | 0.006 | 36.1 | 713 |
0.04 | 0.70 | 0.007 | 39.9 | 804 | |
0.03 | 0.86 | 0.009 | 56.8 | 288 | |
0.03 | 0.78 | 0.005 | 61.9 | 534 | |
0.03 | 0.74 | 0.007 | 56.3 | 480 | |
Bulk composition | 0.03 | ||||
± | 0.006 | ||||
H2O | 40.5 | 0.70 | 7.4 | 63.2 | 431 |
40.0 | 0.73 | 5.7 | 43.8 | 1006 | |
47.8 | 0.78 | 6.3 | 61.9 | 1387 | |
55.5 | 0.86 | 3.7 | 39.9 | 544 | |
53.2 | 0.71 | 4.7 | 39.9 | 1538 | |
Bulk composition | 47.2 | ||||
± | 5.7 | ||||
CO2 | 0.85 | 0.82 | 0.076 | 36.6 | 557 |
1.07 | 0.71 | 0.182 | 37.8 | 473 | |
0.65 | 0.87 | 0.045 | 50.9 | 451 | |
1.02 | 0.76 | 0.265 | 31.8 | 439 | |
1.06 | 0.70 | 0.653 | 37.3 | 725 | |
Bulk composition | 0.87 | ||||
± | 0.24 | ||||
H2S | 0.13 | 0.93 | 0.011 | 52.9 | 526 |
H2O/CO2 | 68.6 | 0.75 | 10.0 | 61.9 | 1019 |
Gas Species | Molar Ratio x/SO2 | ± (1σ) | %Err | Composition (mol%) | ± (1σ) |
---|---|---|---|---|---|
H2O | 47.2 | 5.7 | 12 | 95.88 | 11.58 |
CO2 | 0.87 | 0.24 | 24 | 1.77 | 0.49 |
SO2 | 1.00 | --- | --- | 2.03 | --- |
H2S | 0.13 | 0.01 | 8 | 0.26 | 0.02 |
H2 | 0.03 | 0.01 | 20 | 0.06 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lages, J.; Moussallam, Y.; Bani, P.; Peters, N.; Aiuppa, A.; Bitetto, M.; Giudice, G. First In-Situ Measurements of Plume Chemistry at Mount Garet Volcano, Island of Gaua (Vanuatu). Appl. Sci. 2020, 10, 7293. https://doi.org/10.3390/app10207293
Lages J, Moussallam Y, Bani P, Peters N, Aiuppa A, Bitetto M, Giudice G. First In-Situ Measurements of Plume Chemistry at Mount Garet Volcano, Island of Gaua (Vanuatu). Applied Sciences. 2020; 10(20):7293. https://doi.org/10.3390/app10207293
Chicago/Turabian StyleLages, Joao, Yves Moussallam, Philipson Bani, Nial Peters, Alessandro Aiuppa, Marcello Bitetto, and Gaetano Giudice. 2020. "First In-Situ Measurements of Plume Chemistry at Mount Garet Volcano, Island of Gaua (Vanuatu)" Applied Sciences 10, no. 20: 7293. https://doi.org/10.3390/app10207293
APA StyleLages, J., Moussallam, Y., Bani, P., Peters, N., Aiuppa, A., Bitetto, M., & Giudice, G. (2020). First In-Situ Measurements of Plume Chemistry at Mount Garet Volcano, Island of Gaua (Vanuatu). Applied Sciences, 10(20), 7293. https://doi.org/10.3390/app10207293