Continuous Damping Control for Rollover Prevention with Optimal Distribution Strategy of Damping Force
Abstract
:1. Introduction
2. Vehicle Dynamics Model and Model Verification
2.1. Fourteen-Degree-of-Freedom Vehicle Model
2.1.1. Vehicle Dynamics Equations
2.1.2. Body Motion Equations
2.1.3. Suspension Motion Equations
2.2. Model Verfication
3. Design of Optimal Distribution Strategy of Damping Force Controller
3.1. Lateral Load Transfer Ratio
3.2. Optimal Distribution Strategy of Damping Force
4. Simulation and Result Analysis
4.1. Fishhook Test
4.2. Crosswind Test
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Trends and Rollover-Reduction Effectiveness of Static Stability Factor in Passenger Vehicles. Available online: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812444 (accessed on 7 April 2020).
- Geospatial Summary of Crash Fatalities. Available online: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812607 (accessed on 28 August 2020).
- Yim, S.; Park, Y. Design of rollover prevention controller with linear matrix inequality based trajectory sensitivity minimization. Veh. Syst. Dyn. 2011, 49, 1225–1244. [Google Scholar] [CrossRef]
- Han, I.; Rho, K. Characteristic analysis of vehicle rollover accidents: Rollover scenarios and prediction/warning. Int. J. Automot. Technol. 2017, 18, 451–461. [Google Scholar] [CrossRef]
- Chu, D.; Lu, X.-Y.; Wu, C.; Hu, Z.; Zhong, M. Smooth Sliding Mode Control for Vehicle Rollover Prevention Using Active Antiroll Suspension. Math. Probl. Eng. 2015, 2015, 478071. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Liu, L.; Hao, Y.; Li, H.; Tang, H. Simulation for structure Optimization design on truck rollover test. In Proceedings of the 2011 Second International Conference on Mechanic Automation and Control Engineering, Hohhot, China, 15–17 July 2011; Volume 6, pp. 671–674. [Google Scholar] [CrossRef]
- Winkler, C.; Ervin, D. Rollover of heavy commercial vehicles. UMTRI Res. Rev. 2000, 31, 1–17. [Google Scholar]
- Huston, R.L.; Kelly, F.A. Another look at the static stability factor (SSF) in predicting vehicle rollover. Int. J. Crashworthiness 2014, 19, 567–575. [Google Scholar] [CrossRef]
- Johansson, B.; Gafvert, M. Untripped SUV rollover detection and prevention. In Proceedings of the 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), Nassau, Bahamas, 14–17 December 2004; Volume 5, pp. 5461–5466. [Google Scholar]
- Goldman, R.; El-Gindy, M.; Kulakowski, B. Rollover dynamics of road vehicles: Literature survey. Int. J. Heavy Veh. Syst. 2001, 8, 103. [Google Scholar] [CrossRef]
- Rajamani, R.; Piyabongkarn, D.; Tsourapas, V.; Lew, J. Real-time estimation of roll angle and CG height for active rollover prevention applications. In Proceedings of the 2009 American Control Conference, St. Louis, MO, USA, 10–12 June 2009; pp. 433–438. [Google Scholar]
- Imine, H.; Benallegue, A.; Madani, T.; Srairi, S. Rollover Risk Prediction of Heavy Vehicle Using High-Order Sliding-Mode Observer: Experimental Results. IEEE Trans. Veh. Technol. 2013, 63, 2533–2543. [Google Scholar] [CrossRef]
- Rath, J.; Defoort, M.; Veluvolu, K.C. Rollover Index Estimation in the Presence of Sensor Faults, Unknown Inputs, and Uncertainties. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2949–2959. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Guo, K.; Lv, J.; Peng, T. Contour line of load transfer ratio for vehicle rollover prediction. Veh. Syst. Dyn. 2017, 55, 1748–1763. [Google Scholar] [CrossRef]
- Phanomchoeng, G.; Rajamani, R. Real-Time Estimation of Rollover Index for Tripped Rollovers with a Novel Unknown Input Nonlinear Observer. IEEE/ASME Trans. Mechatron. 2013, 19, 743–754. [Google Scholar] [CrossRef]
- Larish, C.; Piyabongkarn, D.; Tsourapas, V.; Rajamani, R. A New Predictive Lateral Load Transfer Ratio for Rollover Prevention Systems. IEEE Trans. Veh. Technol. 2013, 62, 2928–2936. [Google Scholar] [CrossRef]
- Yoon, J.; Kim, N.; Yi, K. Design of a rollover index-based vehicle stability control scheme. Veh. Syst. Dyn. 2007, 45, 459–475. [Google Scholar] [CrossRef]
- Ju-Long, D. Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar] [CrossRef]
- Chou, T.; Chu, T.-W. An improvement in rollover detection of articulated vehicles using the grey system theory. Veh. Syst. Dyn. 2014, 52, 679–703. [Google Scholar] [CrossRef]
- Mashadi, B.; Mostaghimi, H. Vehicle lift-off modelling and a new rollover detection criterion. Veh. Syst. Dyn. 2017, 55, 704–724. [Google Scholar] [CrossRef]
- Chen, B.-C.; Peng, H. Differential-Braking-Based Rollover Prevention for Sport Utility Vehicles with Human-in-the-loop Evaluations. Veh. Syst. Dyn. 2001, 36, 359–389. [Google Scholar] [CrossRef]
- Dahmani, H.; Chadli, M.; Rabhi, A.; El Hajjaji, A. Vehicle dynamic estimation with road bank angle consideration for rollover detection: Theoretical and experimental studies. Veh. Syst. Dyn. 2013, 51, 1853–1871. [Google Scholar] [CrossRef]
- Stankiewicz, P.G.; Brown, A.A.; Brennan, S.N. Preview Horizon Analysis for Vehicle Rollover Prevention Using the Zero-Moment Point. J. Dyn. Syst. Meas. Control 2015, 137, 091002. [Google Scholar] [CrossRef]
- Ataei, M.; Khajepour, A.; Jeon, S. A general rollover index for tripped and untripped rollovers on flat and sloped roads. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2019, 233, 304–316. [Google Scholar] [CrossRef]
- Shim, T.; Ghike, C. Understanding the limitations of different vehicle models for roll dynamics studies. Veh. Syst. Dyn. 2007, 45, 191–216. [Google Scholar] [CrossRef]
- Yim, S.; Jeon, K.; Yi, K. An investigation into vehicle rollover prevention by coordinated control of active anti-roll bar and electronic stability program. Int. J. Control Autom. Syst. 2012, 10, 275–287. [Google Scholar] [CrossRef]
- Yim, S.; Lim, C.W.; Oh, M.-H. An investigation into the structures of linear quadratic controllers for vehicle rollover prevention. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2012, 227, 472–480. [Google Scholar] [CrossRef]
- Yim, S. Design of a rollover prevention controller with differential game theory and a coevolutionary genetic algorithm. J. Mech. Sci. Technol. 2011, 25, 1565–1571. [Google Scholar] [CrossRef]
- Muniandy, V.; Samin, P.; Jamaluddin, H. Application of a self-tuning fuzzy PI–PD controller in an active anti-roll bar system for a passenger car. Veh. Syst. Dyn. 2015, 53, 1641–1666. [Google Scholar] [CrossRef]
- Solmaz, S.; Shorten, R.; Wulff, K.; Cairbre, F.Ó. A design methodology for switched discrete time linear systems with applications to automotive roll dynamics control. Automatica 2008, 44, 2358–2363. [Google Scholar] [CrossRef] [Green Version]
- Van Der Westhuizen, S.F.; Els, P.S. Slow active suspension control for rollover prevention. J. Terramechanics 2013, 50, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.; Cho, W.; Koo, B.; Yi, K. Unified Chassis Control for Rollover Prevention and Lateral Stability. IEEE Trans. Veh. Technol. 2008, 58, 596–609. [Google Scholar] [CrossRef]
- Yoon, J.; Cho, W.; Kang, J.; Koo, B.; Yi, K. Design and evaluation of a unified chassis control system for rollover prevention and vehicle stability improvement on a virtual test track. Control Eng. Pr. 2010, 18, 585–597. [Google Scholar] [CrossRef]
- Tchamna, R.; Youn, E.; Youn, I. Combined control effects of brake and active suspension control on the global safety of a full-car nonlinear model. Veh. Syst. Dyn. 2014, 52, 69–91. [Google Scholar] [CrossRef]
- Tarko, A.P.; Hall, T.; Romero, M.; Jiménez, C.G.L. Evaluating the rollover propensity of trucks—A roundabout example. Accid. Anal. Prev. 2016, 91, 127–134. [Google Scholar] [CrossRef]
- Zhu, B.; Piao, Q.; Zhao, J.; Guo, L. Integrated chassis control for vehicle rollover prevention with neural network time-to-rollover warning metrics. Adv. Mech. Eng. 2016, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bencatel, R.; Tian, R.; Girard, A.; Kolmanovsky, I. Reference Governor Strategies for Vehicle Rollover Avoidance. IEEE Trans. Control Syst. Technol. 2017, 26, 1954–1969. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Wong, P.K.; Ma, X.; Xie, Z. Chassis integrated control for active suspension, active front steering and direct yaw moment systems using hierarchical strategy. Veh. Syst. Dyn. 2016, 55, 72–103. [Google Scholar] [CrossRef]
- Zhao, W.; Ji, L.; Wang, C. H∞ control of anti-rollover strategy based on predictive vertical tire force. Trans. Inst. Meas. Control 2017, 40, 3587–3603. [Google Scholar] [CrossRef]
- Luo, Y.; Cao, K.; Dai, Y.; Chu, W.; Li, K. A Novel Hierarchical Global Chassis Control System for Distributed Electric Vehicles. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 2014, 7, 313–327. [Google Scholar] [CrossRef]
- Cao, K.; Luo, Y.; Dai, Y.; Chu, W.; Chen, L.; Li, K. Collaborative Control of Longitudinal/Lateral/Vertical Tire Forces for Distributed Electric Vehicles. Automot. Eng. 2015, 37, 985–991. [Google Scholar]
- Ataei, M.; Khajepour, A.; Jeon, S. Rollover stabilities of three-wheeled vehicles including road configuration effects. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 859–871. [Google Scholar] [CrossRef]
- Giappino, S.; Rocchi, D.; Schito, P.; Tomasini, G. Cross wind and rollover risk on lightweight railway vehicles. J. Wind. Eng. Ind. Aerodyn. 2016, 153, 106–112. [Google Scholar] [CrossRef]
Vehicle Parameters | Value | Unit |
---|---|---|
mt | 900 | kg |
ms | 700 | kg |
Ixx | 268 | kg·m2 |
Iyy | 708 | kg·m2 |
Izz | 708 | kg·m2 |
h | 700 | mm |
B1 | 1469 | mm |
B2 | 1430 | mm |
L1 | 970 | mm |
L2 | 903 | mm |
g | 9.8 | m/s2 |
Ksl1/Ksr1 | 14 | N/mm |
Ksl2/Ksr2 | 18 | N/mm |
Test Results (Unit) | CarSim | Simulink | Percentage Point 1 | |
---|---|---|---|---|
Roll angle (deg) | maximum | 1.882669 | 1.9110172 | 1.50% |
minimum | −1.140343 | −1.149754 | 0.83% | |
average | 0.3543169 | 0.3560246 | 0.48% | |
Lateral acceleration (g’s) | maximum | 0.2252319 | 0.2512166 | 11.5% |
minimum | −0.1377398 | −0.1543274 | 12.0% | |
average | 0.04496558 | 0.04642835 | 3.25% |
Test Parameters | Value | Unit |
---|---|---|
Longitude target speed | 80 | km/h |
Friction coefficient | 0.85 | - |
Steer input angle peak value | 294 | deg |
Simulation time | 20 | second |
Road condition | straight | - |
|Threshold of CDC-LTR control| | 0.9 | - |
Test Results (Unit) | CDC-LTR | CDC-ODDF | Percentage Point 1 | |
---|---|---|---|---|
Roll angle (rad) | maximum | 0.008001 | 0.07378 | −7.79% |
minimum | −0.09906 | −0.09281 | −6.30% | |
average | −0.04896 | −0.04605 | −5.94% | |
standard deviation | 0.03012 | 0.02856 | −5.18% | |
Roll angle rate (rad/s) | maximum | 0.5657 | 0.4664 | −5.34% |
minimum | −0.8282 | −0.7776 | −6.11% | |
average | −0.02054 | −0.01906 | −7.21% | |
standard deviation | 0.09313 | 0.08186 | −12.1% |
Test Parameters | Value | Unit |
---|---|---|
Longitude target speed | 80 | km/h |
Friction coefficient (no crosswind) | 0.85 | - |
Friction coefficient (crosswind) | 0.2 | - |
Wind speed | 8 | m/s |
Simulation time | 8 | second |
Road condition | straight | - |
|Threshold of CDC-LTR control| | 0.9 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Song, C.; Song, S.; Cao, J.; Wang, D.; Qi, C.; Ma, Z.; Xiao, F. Continuous Damping Control for Rollover Prevention with Optimal Distribution Strategy of Damping Force. Appl. Sci. 2020, 10, 7230. https://doi.org/10.3390/app10207230
Zhang X, Song C, Song S, Cao J, Wang D, Qi C, Ma Z, Xiao F. Continuous Damping Control for Rollover Prevention with Optimal Distribution Strategy of Damping Force. Applied Sciences. 2020; 10(20):7230. https://doi.org/10.3390/app10207230
Chicago/Turabian StyleZhang, Xu, Chuanxue Song, Shixin Song, Jingwei Cao, Da Wang, Chunyang Qi, Zhinan Ma, and Feng Xiao. 2020. "Continuous Damping Control for Rollover Prevention with Optimal Distribution Strategy of Damping Force" Applied Sciences 10, no. 20: 7230. https://doi.org/10.3390/app10207230
APA StyleZhang, X., Song, C., Song, S., Cao, J., Wang, D., Qi, C., Ma, Z., & Xiao, F. (2020). Continuous Damping Control for Rollover Prevention with Optimal Distribution Strategy of Damping Force. Applied Sciences, 10(20), 7230. https://doi.org/10.3390/app10207230