Direct Growth of Antimonene on C-Plane Sapphire by Molecular Beam Epitaxy
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Z.; Dong, J.; Yi, D.; Niu, J.; Wu, M.; Lin, L.; Yin, R.; Li, M.; Zhou, J.; et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074–1080. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhang, Z.; Qiu, L.; Zhuang, J.; Zhang, L.; Wang, H.; Liao, C.; Song, H.; Qiao, R.; Gao, P.; et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol. 2016, 11, 930–935. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Aljarb, A.; Shi, Y.; Li, L.-J. Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability. Chem. Rev. 2017, 118, 6134–6150. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koenig, S.P.; Doganov, R.A.; Schmidt, H.; Neto, A.H.C.; Oezyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 2014, 104, 103106. [Google Scholar] [CrossRef] [Green Version]
- Rodin, A.S.; Carvalho, A.; Castro Neto, A.H. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 2014, 112, 176801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Yan, Z.; Li, Y.; Chen, Z.; Zeng, H. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem. 2015, 127, 3155–3158. [Google Scholar] [CrossRef]
- Pumera, M.; Sofer, Z. 2D Monoelemental Arsenene, Antimonene, and Bismuthene: Beyond Black Phosphorus. Adv. Mater. 2017, 29, 1605299. [Google Scholar] [CrossRef]
- Reis, F.; Li, G.; Dudy, L.; Bauernfeind, M.; Glass, S.; Hanke, W.; Thomale, R.; Schäfer, J.; Claessen, R. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science 2017, 357, 287–290. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Xie, M.; Li, F.; Yan, Z.; Li, Y.; Kan, E.; Liu, W.; Chen, Z.; Zeng, H. Semiconducting Group?15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. Angew. Chem. 2016, 128, 1698–1701. [Google Scholar] [CrossRef]
- Zhang, F.; Li, W.; Dai, X. Effects of interlayer coupling on the electronic structures of antimonene/graphene van der Waals heterostructures. Superlattices Microstruct. 2016, 100, 826–832. [Google Scholar] [CrossRef]
- Lu, H.; Gao, J.; Hu, Z.; Shao, X. Biaxial strain effect on electronic structure tuning in antimonene-based van der Waals heterostructures. RSC Adv. 2016, 6, 102724–102732. [Google Scholar] [CrossRef]
- Xie, M.; Zhang, S.; Cai, B.; Zou, Y.; Zeng, H. N- and p-type doping of antimonene. RSC Adv. 2016, 6, 14620–14625. [Google Scholar] [CrossRef]
- Wang, S.; Wang, W.; Zhao, G. Thermal transport properties of antimonene: An ab initio study. Phys. Chem. Chem. Phys. 2016, 18, 31217–31222. [Google Scholar] [CrossRef]
- Huo, C.; Sun, X.; Yan, Z.; Song, X.; Zhang, S.; Xie, Z.; Liu, J.; Ji, J.; Jiang, L.; Zhou, S.; et al. Retraction of “Few-Layer Antimonene: Large Yield Synthesis, Exact Atomical Structure, and Outstanding Optical Limiting”. J. Am. Chem. Soc. 2017, 139, 35688. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.-S.; Chen, C.-W.; Hsiao, C.-H.; Ouyang, H.; Liang, J.-H. The advent of multilayer antimonene nanoribbons with room temperature orange light emission. Chem. Commun. 2016, 52, 8409–8412. [Google Scholar] [CrossRef] [Green Version]
- Koma, A. Van der Waals epitaxy—A new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 1992, 216, 72–76. [Google Scholar] [CrossRef]
- Koma, A. Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 1999, 201, 236–241. [Google Scholar] [CrossRef]
- Koma, A.; Sunouchi, K.; Miyajima, T. Summary Abstract: Fabrication of ultrathin heterostructures with van der Waals epitaxy. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 1985, 3, 724. [Google Scholar] [CrossRef]
- Wu, X.; Shao, Y.; Liu, H.; Feng, Z.; Ibrahim, K.; Wang, Y.; Sun, J.; Zhu, S.; Du, S.; Shi, Y.; et al. Epitaxial Growth and Air-Stability of Monolayer Antimonene on PdTe 2. Adv. Mater. 2016, 29, 1605407. [Google Scholar] [CrossRef] [PubMed]
- Gibaja, C.; Rodriguez-San-Miguel, D.; Ares, P.; Gómez-Herrero, J.; Varela, M.; Gillen, R.; Maultzsch, J.; Hauke, F.; Hirsch, A.; Abellan, G. Few-Layer Antimonene by Liquid-Phase Exfoliation. Angew. Chem. Int. Ed. 2016, 55, 14345–14349. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Song, X.; Liu, J.; Yan, Z.; Huo, C.; Zhang, S.; Su, M.; Liao, L.; Wang, W.; Ni, Z.; et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 2016, 7, 13352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Y.; Liu, Z.-L.; Cheng, C.; Wu, X.; Liu, H.; Liu, C.; Wang, J.-O.; Zhu, S.-Y.; Wang, Y.-Q.; Shi, D.-X.; et al. Epitaxial Growth of Flat Antimonene Monolayer: A New Honeycomb Analogue of Graphene. Nano Lett. 2018, 18, 2133–2139. [Google Scholar] [CrossRef]
- Shi, Z.Q.; Li, H.; Yuan, Q.Q.; Song, Y.H.; Lv, Y.Y.; Shi, W.; Jia, Z.-Y.; Gao, L.; Chen, Y.-B.; Zhu, W.; et al. Van der Waals heteroepitaxial growth of monolayer Sb in puckered honeycomb structure. arXiv 2019, arXiv:1903.00641. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Cao, D.; Wang, J.; Liang, P.; Chen, X.; Shu, H. Interface effect on electronic and optical properties of antimonene/GaAs van der Waals heterostructures. J. Mater. Chem. C 2017, 5, 9687–9693. [Google Scholar] [CrossRef]
- Fortin-Deschênes, M.; Waller, O.; Menteş, T.O.; Locatelli, A.; Mukherjee, S.; Genuzio, F.; Levesque, P.L.; Hébert, A.; Martel, R.; Moutanabbir, O. Synthesis of Antimonene on Germanium. Nano Lett. 2017, 17, 4970–4975. [Google Scholar] [CrossRef]
- Chen, H.-A.; Sun, H.; Wu, C.-R.; Wang, Y.-X.; Lee, P.-H.; Pao, C.-W.; Lin, S.-Y. Single-Crystal Antimonene Films Prepared by Molecular Beam Epitaxy: Selective Growth and Contact Resistance Reduction of the 2D Material Heterostructure. ACS Appl. Mater. Interfaces 2018, 10, 15058–15064. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, Y.; Peng, R.; Huang, B.; Dai, Y. Ideal inert substrates for planar antimonene: h-BN and hydrogenated SiC(0001). Phys. Chem. Chem. Phys. 2018. [Google Scholar] [CrossRef]
- Wang, X.; He, J.; Zhou, B.; Zhang, Y.; Wu, J.; Hu, R.; Liu, L.; Song, J.; Qu, J. Bandgap-Tunable Preparation of Smooth and Large Two-Dimensional Antimonene. Angew. Chem. 2018, 57, 8668–8673. [Google Scholar] [CrossRef]
- Ares, P.; Aguilar-Galindo, F.; Rodríguez-San-Miguel, D.; Aldave, D.A.; Díaz-Tendero, S.; Alcamí, M.; Martín, F.; Gómez-Herrero, J.; Zamora, F. Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions. Adv. Mater. 2016, 28, 6332–6336. [Google Scholar] [CrossRef]
- Martínez-Guerra, E.; Falkenberg, G.; Johnson, R.L.; Takeuchi, N. Adsorption ofSb4on Ge(001) and Si(001) surfaces: Scanning tunneling microscopy and first-principles calculations. Phys. Rev. B 2006, 73, 075302. [Google Scholar] [CrossRef]
- Kaxiras, E. Interplay of Strain and Chemical Bonding in Surfactant Monolayers. EPL Europhys. Lett. 1993, 21, 685–690. [Google Scholar] [CrossRef]
- Golding, T.D.; Dura, J.A.; Wang, W.C.; Vigliante, A.; Moss, S.C.; Chen, H.C.; Miller, J.H.; Hoffman, C.A.; Meyer, J.R. Sb/GaSb heterostructures and multilayers. Appl. Phys. Lett. 1993, 63, 1098–1100. [Google Scholar] [CrossRef]
- Dura, J.A.; Vigliante, A.; Golding, T.D.; Moss, S.C. Epitaxial growth of Sb/GaSb structures: An example of V/III-V heteroepitaxy. J. Appl. Phys. 1995, 77, 21–27. [Google Scholar] [CrossRef]
- Margrave, J.H. The Characterization of High Temperature Vapors; John Wiley & Sons: New York, NY, USA, 1967. [Google Scholar]
Sample No. | Growth Temperature (°C) | Growth Time (min) | Crystalline/Amorphous | Electrical Performance | Effective Thickness (nm) |
---|---|---|---|---|---|
A-1 | 150 | 10 | amorphous | insulating | 57.81 ± 4.38 |
B-1 | 150 | 10 | crystal | conducting | ≈15 |
A-2 | 200 | 30 | crystal | conducting | 32.01 ± 2.08 |
A-3 | 225 | 30 | crystal | \ | 32.11 ± 9.40 |
A-4 | 250 | 30 | crystal | \ | 10.48 ± 3.73 |
A-5 | 265 | 30 | crystal | \ | 1.33 ± 0.37 |
A-6 | 270 | 30 | \ | \ | 0 |
A-7 | 280 | 30 | \ | \ | 0 |
Sample No. | Carrier Type | Rsheet (Ω/□) | Thickness (nm) | Carrier Concentration (1/cm3) | μ (cm²/V·s) | Resistances (Ω) R∥/R⊥ |
---|---|---|---|---|---|---|
A-1 | \ | \ | 57.81 ± 4.38 | \ | \ | Insulating |
A-2 | p | 75.04 | 32.01 ± 2.08 | 2.23 × 1020 | 74.62 | 21.85/12.23 |
B-1 | p | 147.1 | ≈15 | 4.39 × 1020 | 64.44 | 39.81/26.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, M.; Li, C.; Ding, Y.; Zhang, K.; Xia, S.; Wang, Y.; Lu, M.-H.; Lu, H.; Chen, Y.-F. Direct Growth of Antimonene on C-Plane Sapphire by Molecular Beam Epitaxy. Appl. Sci. 2020, 10, 639. https://doi.org/10.3390/app10020639
Gu M, Li C, Ding Y, Zhang K, Xia S, Wang Y, Lu M-H, Lu H, Chen Y-F. Direct Growth of Antimonene on C-Plane Sapphire by Molecular Beam Epitaxy. Applied Sciences. 2020; 10(2):639. https://doi.org/10.3390/app10020639
Chicago/Turabian StyleGu, Minghui, Chen Li, Yuanfeng Ding, Kedong Zhang, Shunji Xia, Yusheng Wang, Ming-Hui Lu, Hong Lu, and Yan-Feng Chen. 2020. "Direct Growth of Antimonene on C-Plane Sapphire by Molecular Beam Epitaxy" Applied Sciences 10, no. 2: 639. https://doi.org/10.3390/app10020639
APA StyleGu, M., Li, C., Ding, Y., Zhang, K., Xia, S., Wang, Y., Lu, M.-H., Lu, H., & Chen, Y.-F. (2020). Direct Growth of Antimonene on C-Plane Sapphire by Molecular Beam Epitaxy. Applied Sciences, 10(2), 639. https://doi.org/10.3390/app10020639