High-Frequency Limits of Graphene Field-Effect Transistors with Velocity Saturation
Abstract
:1. Introduction
2. Methods
3. Characterization of Low-Frequency GFETs
4. Simple Model of GFETs
4.1. Substrate Phonon Scattering Model
4.2. Dirac Pinch-Off Model
4.3. Hot Electron Effects
4.4. Complete Model and Discussion
5. Characterization of RF-GFETs
6. Perspectives on High-Frequency Graphene Devices
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, Y.; Jenkins, K.A.; Valdes-Garcia, A.; Farmer, D.B.; Zhu, Y.; Bol, A.A.; Dimitrakopoulos, C.; Zhu, W.; Xia, F.; Avouris, P.; et al. State-of-the-Art Graphene High-Frequency Electronics. Nano Lett. 2012, 12, 3062–3067. [Google Scholar] [CrossRef]
- Wang, L.; Meric, I.; Huang, P.Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L.M.; Muller, D.A.; et al. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science 2013, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Z.; Kimouche, A.; Kalita, D.; Allain, A.; Arjmandi-Tash, H.; Reserbat-Plantey, A.; Marty, L.; Pairis, S.; Reita, V.; Bendiab, N.; et al. Homogeneous Optical and Electronic Properties of Graphene Due to the Suppression of Multilayer Patches During CVD on Copper Foils. Adv. Funct. Mater. 2014, 24, 964–970. [Google Scholar] [CrossRef] [Green Version]
- Banszerus, L.; Schmitz, M.; Engels, S.; Dauber, J.; Oellers, M.; Haupt, F.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 2015, 1, 2375–2548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banszerus, L.; Schmitz, M.; Engels, S.; Goldsche, M.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C. Ballistic Transport Exceeding 28 m in CVD Grown Graphene. Nano Lett. 2016, 16, 1387. [Google Scholar] [CrossRef] [Green Version]
- Meng, N.; Fernandez, J.F.; Vignaud, D.; Dambrine, G.; Happy, H. Fabrication and Characterization of an Epitaxial Graphene Nanoribbon-Based Field-Effect Transistor. IEEE Trans. Electron Dev. 2016, 58, 1594. [Google Scholar] [CrossRef]
- Sze, S.M.; Ng, K. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; p. 293. [Google Scholar]
- Meric, I.; Han, M.Y.; Young, A.F.; Ozyilmaz, B.; Kim, P.; Shepard, K.L. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 2008, 3, 654–659. [Google Scholar] [CrossRef]
- Guo, Z.; Dong, R.; Chakraborty, P.S.; Lourenco, N.; Palmer, J.; Hu, Y.; Ruan, M.; Hankinson, J.; Kunc, J.; Cressler, J.D.; et al. Record Maximum Oscillation Frequency in C-Face Epitaxial Graphene Transistors. Nano Lett. 2013, 13, 942–947. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.H.; Yu, C.; Li, J.; Liu, Q.B.; He, Z.Z.; Song, X.B.; Wang, J.J.; Cai, S.J. An ultra clean self-aligned process for high maximum oscillation frequency graphene transistors. Carbon 2014, 75, 249–254. [Google Scholar] [CrossRef]
- Yang, W.; Berthou, S.; Lu, X.; Wilmart, Q.; Denis, A.; Rosticher, M.; Taniguchi, T.; Watanabe, K.; Fève, G.; Berroir, J.M.; et al. A graphene Zener–Klein transistor cooled by a hyperbolic substrate. Nat. Nanotechnol. 2018, 13, 47. [Google Scholar] [CrossRef] [Green Version]
- Barreiro, A.; Lazzeri, M.; Moser, J.; Mauri, F.; Bachtold, A. Transport Properties of Graphene in the High-Current Limit. Phys. Rev. B 2009, 103, 076601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fratini, S.; Guinea, F. Substrate-limited electron dynamics in graphene. Phys. Rev. B 2008, 77, 195415. [Google Scholar] [CrossRef] [Green Version]
- Freitag, M.; Steiner, M.; Martin, Y.; Perebeinos, V.; Chen, Z.; Tsang, J.C.; Avouris, P. Energy Dissipation in Graphene Field-Effect Transistors. Nano Lett. 2009, 9, 1883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perebeinos, V.; Avouris, P. Inelastic scattering and current saturation in graphene. Phys. Rev. B 2010, 81, 5442. [Google Scholar] [CrossRef] [Green Version]
- Baudin, E.; Voisin, C.; Plaçais, B. Hyperbolic Phonon Polariton Electroluminescence as an Electronic Cooling Pathway. Adv. Funct. Mater. 2019. [Google Scholar] [CrossRef] [Green Version]
- Graef, H.; Mele, D.; Rosticher, M.; Stampfer, C.; Taniguchi, T.; Watanabe, K.; Bocquillon, E.; Fève, G.; Berroir, J.M.; Teo, E.T.H.; et al. Ultra-long wavelength Dirac plasmons in graphene capacitors. emph. J. Phys. Mater. 2018, 1, 01LT02. [Google Scholar] [CrossRef] [Green Version]
- Bandurin, D.A.; Svintsov, D.; Gayduchenko, I.; Xu, S.G.; Principi, A.; Moskotin, M.; Tretyakov, I.; Yagodkin, D.; Zhukov, S.; Taniguchi, T.; et al. Resonant terahertz detection using graphene plasmons. Nat. Commun. 2018, 9, 5392. [Google Scholar] [CrossRef]
- Wilmart, Q.; Inhofer, A.; Boukhicha, M.; Yang, W.; Rosticher, M.; Morfin, P.; Garroum, N.; Fève, G.; Berroir, J.-M.; Placais, B. Contact gating at GHz frequency in graphene. Sci. Rep. 2016, 6, 21085. [Google Scholar] [CrossRef] [Green Version]
- Banszerus, L.; Sohier, T.; Epping, A.; Winkler, F.; Libisch, F.; Haupt, F.; Watanabe, K.; Taniguchi, T.; Müller-Caspary, K.; Marzari, N.; et al. Extraordinary high room-temperature carrier mobility in graphene-WSe2 heterostructures. arXiv 2019, arXiv:1909.09523v1. [Google Scholar]
- Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487. [Google Scholar] [CrossRef]
- Bai, J.; Liao, L.; Zhou, H.; Cheng, R.; Liu, L.; Huang, Y.; Duan, X. Top-Gated Chemical Vapor Deposition Grown Graphene Transistors with Current Saturation. Nano Lett. 2011, 11, 2555–2559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Z.; Kane, C.L.; Dekker, C. High-Field Electrical Transport in Single-Wall Carbon Nanotubes. Phys. Rev. Lett. 2000, 84, 2941–2944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorgan, V.E.; Bae, M.-H.; Pop, E. Mobility and saturation velocity in graphene on SiO2. Appl. Phys. Lett. 2010, 97, 082112. [Google Scholar] [CrossRef]
- Pallecchi, E.; Betz, A.C.; Chaste, J.; Fève, G.; Huard, B.; Kontos, T.; Berroir, J.-M.; Plaçais, B. Transport scattering time probed through rf admittance of a graphene capacitor. Phys. Rev. B 2011, 83, 125408. [Google Scholar] [CrossRef] [Green Version]
- Laitinen, A.; Kumar, M.; Oksanen, M.; Plaçais, B.; Virtanen, P.; Hakonen, P. Coupling between electrons and optical phonons in suspended bilayer graphene. Phys. Rev. B 2015, 91, 121414. [Google Scholar] [CrossRef] [Green Version]
- Betz, A.C.; Jhang, S.H.; Pallecchi, E.; Ferreira, R.; Fève, G.; Berroir, J.-M.; Plaçais, B. Supercollision cooling in undoped graphene. Nat. Phys. 2013, 9, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Betz, A.C.; Vialla, F.; Brunel, D.; Voisin, C.; Picher, M.; Cavanna, A.; Madouri, A.; Fève, G.; Berroir, J.-M.; Plaçais, B.; et al. Hot electron cooling by acoustic phonons in graphene. Phys. Rev. Lett. 2012, 109, 056805. [Google Scholar] [CrossRef] [Green Version]
- Pallecchi, E.; Benz, C.; Betz, A.C.; Löhneysen, H.v.; Plaçais, B.; Danneau, R. Graphene microwave transistors on sapphire substrates. Appl. Phys. Lett. 2011, 99, 113502. [Google Scholar] [CrossRef] [Green Version]
- Mele, D.; Mehdhbi, S.; Fadil, D.; Wei, W.; Ouerghi, A.; Lepilliet, S.; Happy, H.; Pallecchi, E. Graphene FETs Based on High Resolution Nanoribbons for HF Low Power Applications. Electron. Mater. Lett. 2018, 14, 133. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilmart, Q.; Boukhicha, M.; Graef, H.; Mele, D.; Palomo, J.; Rosticher, M.; Taniguchi, T.; Watanabe, K.; Bouchiat, V.; Baudin, E.; et al. High-Frequency Limits of Graphene Field-Effect Transistors with Velocity Saturation. Appl. Sci. 2020, 10, 446. https://doi.org/10.3390/app10020446
Wilmart Q, Boukhicha M, Graef H, Mele D, Palomo J, Rosticher M, Taniguchi T, Watanabe K, Bouchiat V, Baudin E, et al. High-Frequency Limits of Graphene Field-Effect Transistors with Velocity Saturation. Applied Sciences. 2020; 10(2):446. https://doi.org/10.3390/app10020446
Chicago/Turabian StyleWilmart, Quentin, Mohamed Boukhicha, Holger Graef, David Mele, Jose Palomo, Michael Rosticher, Takashi Taniguchi, Kenji Watanabe, Vincent Bouchiat, Emmanuel Baudin, and et al. 2020. "High-Frequency Limits of Graphene Field-Effect Transistors with Velocity Saturation" Applied Sciences 10, no. 2: 446. https://doi.org/10.3390/app10020446
APA StyleWilmart, Q., Boukhicha, M., Graef, H., Mele, D., Palomo, J., Rosticher, M., Taniguchi, T., Watanabe, K., Bouchiat, V., Baudin, E., Berroir, J.-M., Bocquillon, E., Fève, G., Pallecchi, E., & Plaçais, B. (2020). High-Frequency Limits of Graphene Field-Effect Transistors with Velocity Saturation. Applied Sciences, 10(2), 446. https://doi.org/10.3390/app10020446