Development of Ti/Ni Nanolayered Structures to Be a New Candidate for Energy Storage Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physical Characterization
2.3. Three Assembly Electrochemical Cell Setup And Electrode Preparation
3. Results and Discussion
3.1. Powder X-ray Diffraction
3.2. Fourier Transform Infrared Spectroscopy
3.3. Thermal Analyses
3.4. Scanning Electron Microscopy
3.5. Electrochemical Capacitive Performance of Ti/Ni LDHs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gunjakar, J.L.; Inamdar, A.I.; Hou, B.; Cha, S.; Pawar, S.M.; Abu, A.T.; Chavan, H.S.; Kim, J.; Cho, S.; Lee, S. Direct growth of 2D nickel hydroxide nanosheets intercalated with polyoxovanadate anions as a binder-free supercapacitor electrode. Nanoscale 2018, 10, 8953–9412. [Google Scholar] [CrossRef] [Green Version]
- Nagaraju, C.; Gopi, C.V.; Ahn, J.W.; Kim, H.J. Hydrothermal synthesis of MoS2, WS2 nanoparticles for high-performance supercapacitor applications. New J. Chem. 2018, 42, 12357–12360. [Google Scholar] [CrossRef]
- Lim, A.C.; Jadhav, H.S.; Seo, J.G. Electron transport shuttle mechanism via Fe-N-C bond derived from a conjugated microporous polymer for a supercapacitor. Dalton Trans. 2018, 47, 852–858. [Google Scholar] [CrossRef]
- Yi, H.; Wang, H.; Jing, Y.; Peng, T.; Wang, Y.; Guo, J.; He, Q.; Guo, Z.; Wang, X. Advanced asymmetric supercapacitors based on CNT@Ni(OH)2 core–shell composites and 3D graphene networks. J. Mater. Chem. A 2015, 3, 19545–19555. [Google Scholar] [CrossRef]
- Saddique, J.; Cheng, X.; Shi, H.; Wu, R.; Zhang, Y. High-performance Ni-Co sulfide nanosheet-nanotubes grown on Ni Foam as a binder free electrode for supercapacitors. Appl. Sci. 2019, 9, 3082. [Google Scholar] [CrossRef] [Green Version]
- Lyu, H. Triple layer tungsten trioxide, graphene, and polyaniline composite films for combined energy storage and electrochromic applications. Polymers 2020, 12, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, S.A.; Parveen, N.; Kotb, H.M.; Alshoaibi, A. Hydrothermally derived three-dimensional porous hollow double-walled Mn2O3 nanocubes as superior electrode materials for supercapacitor applications. Electrochim. Acta 2020, 335, 136783. [Google Scholar] [CrossRef]
- Parveen, N.; Hilal, M.; Han, J.I. Newly design porous/sponge red phosphorus@graphene and highly conductive Ni2P electrode for asymmetric solid state supercapacitive device with excellent performance. Nano-Micro Lett. 2020, 12, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Parveen, N.; Abdullah, A.; Han, J.I. Robust cyclic stability and high-rate asymmetric supercapacitor based on orange peel-derived nitrogen-doped porous carbon and intercrossed interlinked urchin-like NiCo2O4@3DNF framework. Electrochim. Acta 2019, 293, 84–96. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Cheng, B.; You, W.; Yu, J. Fabrication of a hierarchical NiO/C hollow sphere composite and its enhanced supercapacitor performance. Chem. Commun. 2018, 54, 3731–3734. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Lin, L.Y. Synthesis of ternary metal oxides for battery-supercapacitor hybrid devices: Influences of metal species on redox reaction and electrical conductivity. ACS Appl. Energy Mater. 2018, 1, 2979–2990. [Google Scholar] [CrossRef]
- Ding, X.B.; Zhu, J.S.; Hu, G.Z.; Zhang, S.Q. Core-shell structured CoNi2S4@polydopamine nanocomposites as advanced electrode materials for supercapacitors. Ionics 2019, 25, 897–901. [Google Scholar] [CrossRef]
- Wang, L.; Chen, B.; Ma, J.; Cui, G.; Chen, L. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem. Soc. Rev. 2018, 47, 6505–6602. [Google Scholar] [CrossRef] [PubMed]
- Fic, K.; Platek, A.; Piwek, J.; Frackowiak, E. Sustainable materials for electrochemical capacitors. Mater. Today 2018, 21, 437–454. [Google Scholar] [CrossRef]
- Nguyen, T.; Montemor, M.D.F. Metal Oxide and Hydroxide–Based Aqueous Supercapacitors: From Charge Storage Mechanisms and Functional Electrode Engineering to Need-Tailored Devices. Adv. Sci. 2019, 6, 1801797. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; You, W.; Yu, J. Core-Shell Nitrogen-Doped Carbon Hollow Spheres/Co3O4 Nanosheets as Advanced Electrode for High-Performance Supercapacitor. Small 2018, 14, 1702407. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.S.; Zhang, S.Q.; Wang, D.L. Facile fabrication of coal derived activated carbon/Co3O4 nanocomposites with superior electrochemical performance. Ionics 2017, 23, 1927–1931. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, X.; Ye, H.; Wang, L.; Jiao, X.; Lei, W.; Hao, Q. Three-Dimensional Hierarchical Structure ZnO@C@NiO on Carbon Cloth for Asymmetric Supercapacitor with Enhanced Cycle Stability. ACS Appl. Mater. Interfaces 2018, 10, 3549–3561. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Yuan, X.; Yang, Z.; Zhang, M.; Meng, A.; Li, Q. A High-Energy Density Asymmetric Supercapacitor Based on Fe2O3 Nanoneedle Arrays and NiCo2O4/Ni(OH)2 Hybrid Nanosheet Arrays Grown on SiC Nanowire Networks as Free-Standing Advanced Electrodes. Adv. Energy Mater. 2018, 8, 1702787. [Google Scholar] [CrossRef]
- Lin, J.; Jia, H.; Liang, H.; Chen, S.; Cai, Y.; Qi, J.; Qu, C.; Cano, J.; Fei, W.; Feng, J. Hierarchical CuCo2S4@NiMn-layered double hydroxide core-shell hybrid arrays as electrodes for supercapacitors. Chem. Eng. J. 2018, 336, 562–569. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, C.; Liu, Y.; Wang, Z.; Wang, P.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M.H.; Huang, B.B. Sulfuration of NiV-layered double hydroxide towards novel supercapacitor electrode with enhanced performance. Chem. Eng. J. 2018, 351, 119–126. [Google Scholar] [CrossRef]
- Malak-Polaczyk, A.; Vix-Guterl, C.; Frackowiak, E. Carbon/layered double hydroxide (LDH) composites for supercapacitor application. Energ. Fuel 2010, 24, 3346–3351. [Google Scholar] [CrossRef]
- Xiao, Y.; Su, D.; Wang, X.; Wu, S.; Zhou, L.; Sun, Z.; Wang, Z.; Fang, S.; Li, F. Ultrahigh energy density and stable supercapacitor with 2D NiCoAl layered double hydroxide. Electrochim. Acta 2017, 253, 324–332. [Google Scholar] [CrossRef]
- Jagadale, A.D.; Guan, G.; Li, X.; Du, X.; Ma, X.; Hao, X.; Abudula, A. Ultrathin nanoflakes of cobalt-manganese layered double hydroxide with high reversibility for asymmetric supercapacitor. J. Power Sources 2016, 306, 526–534. [Google Scholar] [CrossRef]
- Shao, M.; Zhang, R.; Li, Z.; Wei, M.; Evans, D.G.; Duan, X. Layered double hydroxides toward electrochemical energy storage and conversion: Design, synthesis and applications. Chem. Commun. 2015, 51, 15880–15893. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Tian, H.; Jiang, Y.; Zhu, K.; Zhang, R.; Tan, Y.; Li, W.; Yu, Z.; Wang, L. Controlled preparation of Ni-Al LDH–NO3 by a dual-anion intercalating process for supercapacitors. Ionics 2019, 25, 3859–3866. [Google Scholar] [CrossRef]
- Li, Y.; Shan, L.; Sui, Y.; Qi, J.; Wei, F.; He, Y.; Meng, Q.; Ren, Y.; Liu, J. Ultrathin Ni-Co LDH nanosheets grown on carbon fiber cloth via electrodeposition for high performance supercapacitors. J. Mater. Sci. Mater. Electron. 2019, 30, 13360–13371. [Google Scholar] [CrossRef]
- Saber, O.; Hefny, N.; AlJaafari, A.A. Improvement of physical characteristics of petroleum waxes by using nano-structured materials. Fuel Process. Technol. 2011, 92, 946–951. [Google Scholar] [CrossRef]
- Nakamoto, N. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Saber, O.; Shaalan, N.M.; Osama, A.; Alshoaibi, A. Development of the morphology and the band gap energy of Co–Si nanofibers by inserting zirconium and titanium with dual anions intercalation process. Appl. Sci. 2019, 9, 4775–4789. [Google Scholar] [CrossRef] [Green Version]
- Faramawy, S.; Zaki, T.; Sakr, A.A.E.; Saber, O.; Aboul-Gheit, A.K.; Hassan, S.A. The activity of Mg-Al layered double hydroxides intercalated with nitrogencontaining anions towards the removal of carbon dioxide from natural gas. J. Nat. Gas Sci. Eng. 2018, 54, 72–82. [Google Scholar] [CrossRef]
- Saber, O.; Aljaafari, A.; Alomair, H.A.; Alshoaibi, A. Novel strategy for producing nanoplatelets to be used as building blocks for shaping nanofibers through layered double hydroxides and poly vinyl alcohol. Chem. Sel. 2019, 4, 4293–4300. [Google Scholar] [CrossRef]
- Hu, L.; Gao, W.; He, J.; Liu, H.; Li, B.; Zhang, X.M. Ni-Al-Ti-layered double hydroxide intercalated with beta-CD and CM-beta-CD: Interaction between the interlayer guests and the laminates. J. Mol. Struct. 2013, 1041, 151–155. [Google Scholar] [CrossRef]
- Saber, O.; Aljaafari, A.; Alshoaibi, A.; Al-Yaari, M.; Osama, M. A novel route for controlling and improving the texture of porous structures through dual growth of alumina nanoparticles and carbon nanotubes using explosion process of solid fuel. J. Mater. Res. Technol. 2020, 9, 67–75. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saber, O.; Ansari, S.A.; Alshoaibi, A. Development of Ti/Ni Nanolayered Structures to Be a New Candidate for Energy Storage Applications. Appl. Sci. 2020, 10, 6935. https://doi.org/10.3390/app10196935
Saber O, Ansari SA, Alshoaibi A. Development of Ti/Ni Nanolayered Structures to Be a New Candidate for Energy Storage Applications. Applied Sciences. 2020; 10(19):6935. https://doi.org/10.3390/app10196935
Chicago/Turabian StyleSaber, Osama, Sajid Ali Ansari, and Adil Alshoaibi. 2020. "Development of Ti/Ni Nanolayered Structures to Be a New Candidate for Energy Storage Applications" Applied Sciences 10, no. 19: 6935. https://doi.org/10.3390/app10196935
APA StyleSaber, O., Ansari, S. A., & Alshoaibi, A. (2020). Development of Ti/Ni Nanolayered Structures to Be a New Candidate for Energy Storage Applications. Applied Sciences, 10(19), 6935. https://doi.org/10.3390/app10196935