A Comparison between Numerical Simulation Models for the Prediction of Acoustic Behavior of Giant Reeds Shredded
Abstract
:1. Introduction
2. Phenomenological and Numerical Models’ Descriptions
2.1. Phenomenological Model
- is the density of air (kg/m3)
- c is the sound speed (m/s)
- is the porosity
- s is the structure factor
- = cp/cv is the ratio of the specific heat at a constant pressure and volume of the air
- f is the frequency (Hz)
- c is the sound speed (m/s)
- n is an integer, n = 0 corresponds to the first value of the maximum
- d is the thickness of the sample (m)
- f2n+1 is the corresponding frequency of the first value of the maximum of the measured absorption coefficient (Hz)
- is the resistivity (Ns/m4)
- is the porosity
- is the density of air (kg/m3)
- s is the structure factor
- is the Prandtl number
2.2. Numerical Model
- xj is the jth input
- wj is the jth weight
- b is the bias
- y is the output
- An input layer
- A set of hidden layers
- An output layer
3. Materials and Methods
3.1. Giant Reeds Characterization
- only wooden parts with an average size of 40 mm long, 10 mm wide, and 3.0 mm thick;
- mixed composed of wooden and bark parts of various sizes;
- only parts of bark.
3.2. Acoustic Feature Measurements
- (kg/m3) is the apparent density of the material
- (kg/m3) is the density of the material
3.3. Models Comparison
4. Results and Discussion
4.1. Measurement Results
4.2. Phenomenological Model Simulation
4.3. Artificial Neural Network Model
- mean (x) represent the mean of the variable x
- sd (x) is the standard deviation of the variable x
- mean = 0
- standard deviation = 1
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rindel, J.H. The use of computer modeling in room acoustics. J. Vibroengineering 2000. 3, 219–224.
- Savioja, L. Modeling techniques for virtual acoustics. Simulation 1999, 45, 10. [Google Scholar]
- Egan, M.D. Architectural Acoustics; McGraw-Hill: New York, NY, USA, 1988; p. 21. [Google Scholar]
- Allard, J.; Atalla, N. Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, 2nd ed.; John Wiley & Sons: Chichester, UK, 2009. [Google Scholar]
- Sagartzazu, X.; Hervella-Nieto, L.; Pagalday, J.M. Review in sound absorbing materials. Arch. Comput. Methods Eng. 2008, 15, 311–342. [Google Scholar] [CrossRef]
- Del Rey, R.; Alba, J.; Arenas, J.P.; Sanchis, V.J. An empirical modelling of porous sound absorbing materials made of recycled foam. Appl. Acoust. 2012, 73, 604–609. [Google Scholar]
- Garai, M. Measurement of the sound-absorption coefficient in situ: The reflection method using periodic pseudo-random sequences of maximum length. Appl. Acoust. 1993, 39, 119–139. [Google Scholar] [CrossRef]
- Suhanek, M.; Jambrosic, K.; Horvat, M. A comparison of two methods for measuring the sound absorption coefficient using impedance tubes. In Proceedings of the IEEE 50th International Symposium ELMAR, Zadar, Croatia, 10–13 September 2008; Volume 1, pp. 321–324. [Google Scholar]
- Champoux, Y.; Allard, J.F. Dynamic tortuosity and bulk modulus in air-saturated porous media. J. Appl. Phys. 1991, 70, 1975–1979. [Google Scholar] [CrossRef]
- Hamet, J.F.; Berengier, M. Acoustical Characteristics of Porous Pavements: A New Phenomenological Model. In Proceedings of the 1993 International Congress on Noise Control Engineering, Leuven, Belgium, 24–26 August 1993. [Google Scholar]
- Champoux, Y.; Stinson, M.R. Measurement of tortuosity of porous materials and implications for acoustical modeling. J. Acoust. Soc. Am. 1990, 87, S139. [Google Scholar] [CrossRef] [Green Version]
- Iannace, G.; Ciaburro, G.; Trematerra, A. Heating, Ventilation, and Air Conditioning (HVAC) Noise Detection in Open-Plan Offices Using Recursive Partitioning. Buildings 2018, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Blanchet, J.; Kang, Y.; Murthy, K. Robust Wasserstein profile inference and applications to machine learning. J. Appl. Probab. 2019, 56, 830–857. [Google Scholar] [CrossRef] [Green Version]
- Iannace, G.; Ciaburro, G.; Trematerra, A. Fault Diagnosis for UAV Blades Using Artificial Neural Network. Robotics 2019, 8, 59. [Google Scholar] [CrossRef] [Green Version]
- Nichols, J.A.; Chan, H.W.H.; Baker, M.A. Machine learning: Applications of artificial intelligence to imaging and diagnosis. Biophys. Rev. 2019, 11, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Puyana Romero, V.; Maffei, L.; Brambilla, G.; Ciaburro, G. Acoustic, visual and spatial indicators for the description of the soundscape of waterfront areas with and without road traffic flow. Int. J. Environ. Res. Public Health 2016, 13, 934. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, P.J.; Monteiro, J.; Pinto, N.; Cruz, D.; Rodrigues, J.M. Application of Machine Learning Algorithms to the IoE: A Survey. In Harnessing the Internet of Everything (IoE) for Accelerated Innovation Opportunities; IGI Global: Hershey, PA, USA, 2019; pp. 31–56. [Google Scholar]
- Iannace, G.; Ciaburro, G.; Trematerra, A. Modelling sound absorption properties of broom fibers using artificial neural networks. Appl. Acoust. 2020, 163, 107239. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, M.; Zhou, Y.; Huang, Y.; Mao, S. Application of machine learning in wireless networks: Key techniques and open issues. IEEE Commun. Surv. Tutor. 2019, 21, 3072–3108. [Google Scholar] [CrossRef] [Green Version]
- Iannace, G.; Ciaburro, G.; Trematerra, A. Wind Turbine Noise Prediction Using Random Forest Regression. Machines 2019, 7, 69. [Google Scholar] [CrossRef] [Green Version]
- Tabak, M.A.; Norouzzadeh, M.S.; Wolfson, D.W.; Sweeney, S.J.; VerCauteren, K.C.; Snow, N.P.; Halseth, J.M.; Di Salvo, P.A.; Lewis, J.S.; White, M.D.; et al. Machine learning to classify animal species in camera trap images: Applications in ecology. Methods Ecol. Evol. 2019, 10, 585–590. [Google Scholar] [CrossRef] [Green Version]
- Iannace, G.; Bravo-Moncayo, L.; Ciaburro, G.; Puyana-Romero, V.; Trematerra, A. The use of green materials for the acoustic correction of rooms. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Madrid, Spain, 16–19 June 2019; Volume 259, pp. 2589–2597. [Google Scholar]
- Maren, A.J.; Harston, C.T.; Pap, R.M. Handbook of Neural Computing Applications, 1st ed.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Samarasinghe, S. Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Ciaburro, G.; Venkateswaran, B. Neural Networks with R: Smart Models Using CNN, RNN, Deep Learning, and Artificial Intelligence Principles; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Günther, F.; Fritsch, S. Neuralnet: Training of neural networks. R J. 2010, 2, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network. Adv. Neural Inf. Process. Syst. 2015, 28, 1135–1143. [Google Scholar]
- Frandsen, P.R. Team Arundo: Interagency Cooperation to Control Giant Reed Cane (Arundo donax). In Assessment and Management of Plant Invasions; Springer: New York, NY, USA, 1997; pp. 244–247. [Google Scholar]
- Pilu, R.; Badone, F.C.; Michela, L. Giant reed (Arundo donax L.): A weed plant or a promising energy crop? Afr. J. Biotechnol. 2012, 11, 9163–9174. [Google Scholar]
- Pilu, R.; Cassani, E.; Landoni, M.; Badone, F.C.; Passera, A.; Cantaluppi, E.; Corno, L.; Adani, F. Genetic characterization of an Italian Giant Reed (Arundo donax L.) clones collection: Exploiting clonal selection. Euphytica 2014, 196, 169–181. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 10534-1: Acoustics e Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 1: Method Using Standing Wave Ratio; ISO: Geneva, Switzerland, 1996. [Google Scholar]
- International Organization for Standardization. ISO 10534-2: Acoustics e Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 2: Transfer-function Method; ISO: Geneva, Switzerland, 1998. [Google Scholar]
- International Organization for Standardization. ISO 9053: Acoustics-Materials for Acoustical Applications-Determination of Airflow Resistance; ISO: Geneva, Switzerland, 1991. [Google Scholar]
- Riedmiller, M.; Braun, H. A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In Proceedings of the IEEE international conference on neural networks, San Francisco, CA, USA, 28 March–1 April 1993; Volume 1993, pp. 586–591. [Google Scholar]
- Moller, M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525–533. [Google Scholar] [CrossRef]
- Ripley, B.D. Pattern Recognition and Neural Networks; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Ciaburro, G.; Iannace, G.; Passaro, J.; Bifulco, A.; Marano, D.; Guida, M.; Marulo, F.; Branda, F. Artificial neural network-based models for predicting the sound absorption coefficient of electrospun poly (vinyl pyrrolidone)/silica composite. Appl. Acoust. 2020, 169, 107472. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G.; Ali, M.; Alabdulkarem, A.; Nuhait, A. An Artificial neural network approach to modelling absorbent asphalts acoustic properties. J. King Saud Univ. Eng. Sci. 2020. [Google Scholar] [CrossRef]
- Iannace, G.; Ciaburro, G. Modelling sound absorption properties for recycled polyethylene terephthalate-based material using Gaussian regression. Build. Acoust. 2020. [Google Scholar] [CrossRef]
Loosed Granular Material | Resistivity [Rayl/m] | Porosity |
---|---|---|
only wooden part | 1100 | 0.35 |
fine mixed | 850 | 0.45 |
only bark | 870 | 0.80 |
RMSE | MAE | Person’s Correlation Coefficient |
---|---|---|
0.300 | 0.253 | 0.666 |
RMSE | MAE | Person’s Correlation Coefficient |
---|---|---|
0.036 | 0.028 | 0.986 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciaburro, G.; Iannace, G.; Puyana-Romero, V.; Trematerra, A. A Comparison between Numerical Simulation Models for the Prediction of Acoustic Behavior of Giant Reeds Shredded. Appl. Sci. 2020, 10, 6881. https://doi.org/10.3390/app10196881
Ciaburro G, Iannace G, Puyana-Romero V, Trematerra A. A Comparison between Numerical Simulation Models for the Prediction of Acoustic Behavior of Giant Reeds Shredded. Applied Sciences. 2020; 10(19):6881. https://doi.org/10.3390/app10196881
Chicago/Turabian StyleCiaburro, Giuseppe, Gino Iannace, Virginia Puyana-Romero, and Amelia Trematerra. 2020. "A Comparison between Numerical Simulation Models for the Prediction of Acoustic Behavior of Giant Reeds Shredded" Applied Sciences 10, no. 19: 6881. https://doi.org/10.3390/app10196881
APA StyleCiaburro, G., Iannace, G., Puyana-Romero, V., & Trematerra, A. (2020). A Comparison between Numerical Simulation Models for the Prediction of Acoustic Behavior of Giant Reeds Shredded. Applied Sciences, 10(19), 6881. https://doi.org/10.3390/app10196881