Immediate Effects of an Inverted Body Position on Energy Expenditure and Blood Lactate Removal after Intense Running
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Subjects
2.3. Procedures
2.4. Measurements
2.5. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramírez-Campillo, R.; Henríquez-Olguín, C.; Burgos, C.; Andrade, D.C. Effect of progressive volume-based overload during plyometric training on explosive and endurance performance in young soccer players. J. Strength Cond. Res. 2015, 29, 1884–1893. [Google Scholar] [CrossRef]
- Fry, A.; Mullinger, K.J.; O’Neill, G.C.; Mullinger, K.J.; Brookers, M.J. The effect of physical fatigue on oscillatory dynamics of the sensorimotor cortex. Acta Physiol. 2017, 220, 370–381. [Google Scholar] [CrossRef] [PubMed]
- Meeusen, R.; Duclos, M.; Gleespn, M.; Foster, C.; Fry, A.; Gleeson, M.; Nieman, D.; Raglin, J.; Rietjens, G.; Steinacker, J.; et al. Prevention, diagnosis and treatment of the overtraining syndrome. Eur. J. Appl. Physiol. 2006, 6, 1–14. [Google Scholar] [CrossRef]
- Halson, S.; Jeukendrup, A.E. Does overtraining exist? An analysis of overreaching and overtraining research. Sports Med. 2004, 34, 967–981. [Google Scholar] [CrossRef] [PubMed]
- Thiel, C.; Vogt, L.; Bürklein, M.; Rosenhagen, A. Functional overreaching during preparation training of elite tennis professionals. J. Hum. Kinet. 2011, 28, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Hausswirth, C.; Mujika, I. Recovery for Performance in Sport; Human Kinetics: Champain, France, 2012. [Google Scholar]
- Belcastro, A.N.; Bonen, A. Lactic acid removal rates during controlled and uncontrolled recovery exercise. J. Appl. Physiol. 1975, 39, 932–936. [Google Scholar] [CrossRef]
- Dupont, G.; Moalla, W.; Guinhouya, C.; Ahmadi, S. Passive versus active recovery during high-intensity intermittent exercises. Med. Sci. Sports Exerc. 2004, 36, 302–308. [Google Scholar] [CrossRef]
- Menzies, P.; Menzies, C.; Mclntyre, L.; Paterson, P. Blood lactate clearance during active recovery after an intense running bout depends on the intensity of the active recovery. J. Sports Sci. 2010, 28, 975–982. [Google Scholar] [CrossRef]
- Mota, M.R.; Dantas, R.A.E.; Oliveira-Silva, I.; Mahalhaes Sales, M.; da Costa Sotero, R.; Espiodola Mota Venancio, P.; Teixeira Junior, J.; Nobre Chaves, S.; de Lima, F.D. Effect of self-paced active recovery and passive recovery on blood lactate removal following a 200 m freestyle swimming trial. Open Access J. Sports Med. 2017, 8, 155–160. [Google Scholar] [CrossRef]
- Soares, A.H.; Oliveira, T.P.; Cavalcante, B.R.; Farah, B.Q.; Lima, A.; Cucato, G.G.; Cardoso, C.G.; Ritti-Dias, R.M. Effects of active recovery on autonomic and haemodynamic responses after aerobic exercise. Clin. Physiol. Funct. Imaging 2017, 37, 62–67. [Google Scholar] [CrossRef]
- Fairchild, T.J.; Armstrong, A.A.; Rao, A.; Hawk, L. Glycogen synthesis in muscle fibers during active recovery from intense exercise. Med. Sci. Sports Exerc. 2003, 35, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Baquet, G.; Dupont, G.; Gamelin, F.-X.; Aucountier, J.; Berthoin, S. Active versus passive recovery in high-intensity intermittent exercises in children: An exploratory study. Pediatr. Exerc. Sci. 2019, 31, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Toubekis, A.G.; Douda, H.T.; Tokmakidis, S.P. Influence of different rest intervals during active or passive recovery on repeated sprint swimming performance. Eur. J. Appl. Physiol. 2005, 93, 694–700. [Google Scholar] [CrossRef]
- Monedero, J.; Donne, B. Effect of recovery interventions on lactate removal and subsequent performance. Int. J. Sports Med. 2000, 21, 593–597. [Google Scholar] [CrossRef]
- Draper, N.; Bird, E.L.; Coleman, I.; Hodgson, C. Effects of active recovery on lactate concentration, heart rate and RPE in climbing. J. Sports Sci. Med. 2006, 5, 97–105. [Google Scholar] [PubMed]
- Gladden, L.B. Muscle as a consumer of lactate. Med. Sci. Sport Exer. 2000, 32, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Starkey, C. Therapeutic Modalities; FA Davis Company: Philadelphia, PA, USA, 2013. [Google Scholar]
- Maestrini, D. Genesis of the so-called insufficient contractions of the heart in decompensation. Policlin. Prat. 1951, 58, 257–268. [Google Scholar]
- Brooks, G.A.; Fahey, T.D.; Baldwin, K.M. Exercise Physiology: Human Bioenergenetics and Its Applications; McGraw Hill: New York, NY, USA, 2005; pp. 293–308. [Google Scholar]
- McInnis, N.H.; Journeay, W.S.; Jay, O.; Lelair, E.; Kenny, G.P. 15° Head-down tilt attenuates the postexercise reduction in cutaneous vascular conductance and sweating and decreases esophageal temperature recovery time. J. Appl. Physiol. 2006, 101, 840–847. [Google Scholar] [CrossRef]
- Journeay, W.S.; Jay, O.; McInnis, N.H.; Lelair, E.; Kenny, G.P. Postexercise heat loss and hemodynamic responses during head-down tilt are similar between genders. Med. Sci. Sports Exerc. 2007, 39, 1308–1804. [Google Scholar] [CrossRef]
- Siamwala, J.H.; Lee, P.C.; Macias, B.R.; Hargens, A.R. Lower-body negative pressure restores leg bone microvascular flow to supine levels during head-down tilt. J. Appl. Physiol. 2015, 119, 101–109. [Google Scholar] [CrossRef]
- Karvonen, J.; Vuorimaa, T. Heart rate and exercise intensity during sports activities. Sports Med. 1988, 5, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.M.; McAuliffe, J.; Johnson, M.J.; Button, D.C. Seated inversion adversely affects vigilance tasks and suppresses heart rate and blood pressure. Occup. Ergon. 2013, 11, 153–163. [Google Scholar] [CrossRef]
- Hart, S.; Drevets, K.; Alford, M.; Salacinski, A.; Hunt, B.E. A method-comparison study regarding the validity and reliability of the Lactate Plus analyzer. BMJ Open 2013, 3, e001899. [Google Scholar] [CrossRef]
- Shahid, A.; Wilkinson, K.; Marcu, S.; Shapiro, C.M. Visual analogue scale to evaluate fatigue severity (VAS-F.). In STOP, THAT and One Hundred Other Sleep Scales; Spinger: New York, NY, USA, 2011; pp. 399–402. [Google Scholar]
- Wolfe, F. Fatigue assessments in rheumatoid arthritis: Comparative performance of visual analog scales and longer fatigue questionnaires in 7760 patients. J. Rheumatol. 2004, 31, 1896–1902. [Google Scholar] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of seletcing and reporting intraclass correlation coefficients for reliability research. J. Chripract. Med. 2016, 15, 155–163. [Google Scholar]
- Ali Rasooli, S.; Koushkie Jahromi, M.; Asadmanesh, A.; Salesi, M. Influence of massage, active and passive recovery on swimming performance and blood lactate. J. Sport Med. Phys. Fit. 2012, 52, 122–127. [Google Scholar]
- Ouergui, I.; Hammouda, O.; Chtourou, H.; Gmada, N.; Franchini, E. Effects of recovery type after a kickboxing match on blood lactate and performance in anaerobic tests. Asian J. Sports Med. 2014, 5, 99–107. [Google Scholar]
- Warren, C.D.; Szymanski, D.J.; Landers, M.R. Effects of three recovery protocols on range of motion, heart rate, rating of perceived exertion, and blood lactate in baseball pitchers during a simulated game. J. Strength Cond. Res. 2015, 29, 3016–3025. [Google Scholar] [CrossRef]
- Goto, K.; Morishima, T. Compression garment promotes muscular strength recovery after resistance exercise. Med. Sci. Sports Exerc. 2014, 46, 2265–2270. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Flanagan, S.D.; Comstock, B.A.; Fragala, M.; Earp, J.; Dunn-Lewis, C.; Ho, J.; Thomas, G.; Solomon-Hill, G.; Penwell, Z.; et al. Effects of a whole body compression garment on markers of recovery after a heavy resistance workout in men and women. J. Strength Cond. Res. 2010, 24, 804–814. [Google Scholar] [CrossRef]
- Dawson, L.G.; Dawson, K.A.; Tiidus, P.M. Evaluating the influence of massage on leg strength, swelling, and pain following a half-marathon. J. Sport Scimed. 2004, 3, 37–43. [Google Scholar]
- Knechtle, B.; Vinzent, T.; Kirby, S.; Knechtle, P. The recovery phase following a triple iron triathlon. J. Hum. Kinet. 2009, 21, 65–74. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Contreras, B. The pump: Potential mechanisms and applications for enhancing hypertrophic adaptations. Strength Cond. J. 2014, 36, 21–25. [Google Scholar] [CrossRef]
- Schoenfeld, B.J. The mecahnisms of muscle hypertrophy and their application to resistance training. J. Strength Cond. Res. 2010, 24, 2857–2872. [Google Scholar] [CrossRef]
- Fellmann, N.; Bedu, M.; Giry, J.; Pharmakis-amadieu, M.; Bezou, M.; Barlet, J.; Coudert, J. Hormonal, fluid, and electrolyte changes during a 72-h recovery from a 24-h endurance run. Int. J. Sports Med. 1989, 10, 406–412. [Google Scholar] [CrossRef]
- Engström, E.; Ottosson, E.; Wohlfart, B.; Grundstorm, N.; Wisen, A. Comparison of heart rate measured by Polar RS400 and ECG, validity and repeatability. Adv. Physiother. 2012, 14, 115–122. [Google Scholar] [CrossRef][Green Version]
- Besson, H.; Brage, S.; Jakes, R.W.; Ekelund, U.; Wareham, N. Estimating physical activity energy expenditure, sedentary time, and physical activity intensity by self-report in adults. Am. J. Clin. Nutr. 2010, 91, 106–114. [Google Scholar] [CrossRef]
- Irwin, M.L.; Ainsworth, B.E.; Conway, J.M. Estimation of energy expenditure from physical activity measures: Determinants of accuracy. Obes. Res. 2001, 9, 517–525. [Google Scholar] [CrossRef]
- Haskvitz, E.M.; Hanten, W.P. Blood pressure response to inversion traction. Phys. Ther. 1986, 66, 1361–1364. [Google Scholar] [CrossRef]
- LeMarr, J.D.; Golding, L.A.; Crehan, K.D. Cardiorespiratory responses to inversion. Physician Sportsmed. 1983, 11, 51–57. [Google Scholar] [CrossRef]
- Cornelissen, V.A.; Verheyden, B.; Aubert, A.E.; Fagard, R.H. Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart-rate variability. J. Hum. Hypertens. 2010, 24, 175–182. [Google Scholar] [CrossRef]
Mean (95% CIs) | Condition | Pre- Run | Post-Run 0 Min | Post-Run 5 Min | Post-Run 10 Min | Post-Run 20 Min | Post-Run 30 Min |
---|---|---|---|---|---|---|---|
Blood lactate (mmol/L) ICC: 0.75 | IBP | 1.3 (0.2) | 9.8 (1.1) | 6.7 (1.2) | 5.4 (1.1) | 4.2 (0.8) | 3.3 (0.5) |
Active | 1.3 (0.2) | 9.4 (1.0) | 6.9 (1.1) | 4.4 (0.8) | 3.3 (0.6) | 2.7 (0.4) | |
Passive | 1.3 (0.3) | 9.3 (1.2) | 8.6 † (1.2) | 6.0 ‡ (0.9) | 4.3 (0.7) | 3.5 (0.5) | |
Heart rate (bpm) ICC: 0.91 | IBP | 72.3 (6.2) | 185.0 (2.0) | 95.9 (5.7) | 110.2 (7.6) | 95.3 (6.9) | 90.1 (5.1) |
Active | 73.8 (5.2) | 184.9 (1.5) | 123.3 # (5.3) | 117.9 (8.2) | 96.3 (4.8) | 91.1 (5.0) | |
Passive | 72.8 (5.8) | 185.5 (1.1) | 102.9 (5.5) | 114.0 (7.3) | 94.2 (5.4) | 90.9 (4.9) | |
Energy expenditure (kcal) ICC: N/A | IBP | - | 74.5 (10.9) | 20.5 (4.6) | 29.9 (7.1) | 33.2 (7.9) | 30.6 (6.8) |
Active | - | 76.3 (12.5) | 38.8 (5.1) | 34.1 (6.2) | 37.3 (8.1) | 31.9 (7.1) | |
Passive | - | 75.7 (12.0) | 24.7 (5.5) | 31.9 (6.5) | 36.0 (8.0) | 31.9 (7.3) | |
Fatigue perception (cm) ICC: 0.76 | IBP | 1.1 (0.4) | 6.8 (0.8) | 3.4 (0.9) | 2.1 (0.5) | 1.3 (0.4) | 0.8 (0.2) |
Active | 0.7 (0.2) | 6.6 (0.9) | 3.3 (0.7) | 1.9 (0.5) | 1.2 (0.4) | 0.7 (0.2) | |
Passive | 0.9 (0.3) | 7.0 (0.9) | 3.3 (0.6) | 2.2 (0.8) | 1.2 (0.4) | 0.8 (0.4) |
Mean (95% CIs) | Condition | Pre- Run | Post-Run 0 Min | Post-Run 5 Min | Post-Run 10 Min | Post-Run 20 Min | Post-Run 30 Min |
---|---|---|---|---|---|---|---|
Left thigh (cm) ICC: 0.99 | IBP | 54.4 (1.2) | 54.7 (1.2) | 54.5 (1.2) | 54.4 (1.2) | 54.4 (1.2) | 54.4 (1.2) |
Active | 54.2 (1.4) | 54.6 (1.4) | 54.4 (1.4) | 54.3 (1.4) | 54.3 (1.4) | 54.3 (1.4) | |
Passive | 54.4 (1.4) | 54.7 (1.4) | 54.7 (1.5) | 54.5 (1.4) | 54.4 (1.4) | 54.4 (1.4) | |
Right thigh (cm) ICC: 0.99 | IBP | 54.6 (1.1) | 54.9 (1.2) | 54.6 (1.2) | 54.6 (1.2) | 54.6 (1.1) | 54.5 (1.1) |
Active | 54.4 (1.3) | 55.0 (1.4) | 54.7 (1.2) | 54.6 (1.3) | 54.5 (1.3) | 54.5 (1.3) | |
Passive | 54.5 (1.3) | 54.9 (1.3) | 54.8 (1.3) | 54.8 (1.3) | 54.7 (1.3) | 54.6 (1.3) | |
Left calf (cm) ICC: 0.99 | IBP | 36.3 (0.9) | 36.9 (1.0) | 36.6 (0.9) | 36.5 (0.9) | 36.4 (0.9) | 36.4 (0.9) |
Active | 36.4 (1.1) | 37.0 (1.1) | 36.9 (1.1) | 36.7 (1.1) | 36.6 (1.1) | 36.6 (1.1) | |
Passive | 36.4 (1.0) | 37.0 (1.0) | 36.9 (1.0) | 36.7 (1.0) | 36.7 (1.0) | 36.6 (1.0) | |
Right calf (cm) ICC: 0.99 | IBP | 36.5 (0.9) | 37.2 (0.9) | 36.9 (0.9) | 36.7 (0.9) | 36.6 (0.9) | 36.6 (0.9) |
Active | 36.5 (1.0) | 37.2 (1.0) | 37.0 (1.0) | 36.8 (1.0) | 36.7 (1.0) | 36.7 (1.0) | |
Passive | 36.6 (0.9) | 37.2 (1.0) | 37.1 (1.0) | 36.9 (1.0) | 36.9 (1.0) | 36.8 (1.0) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.S.; Park, J. Immediate Effects of an Inverted Body Position on Energy Expenditure and Blood Lactate Removal after Intense Running. Appl. Sci. 2020, 10, 6645. https://doi.org/10.3390/app10196645
Kim MS, Park J. Immediate Effects of an Inverted Body Position on Energy Expenditure and Blood Lactate Removal after Intense Running. Applied Sciences. 2020; 10(19):6645. https://doi.org/10.3390/app10196645
Chicago/Turabian StyleKim, Moo Sung, and Jihong Park. 2020. "Immediate Effects of an Inverted Body Position on Energy Expenditure and Blood Lactate Removal after Intense Running" Applied Sciences 10, no. 19: 6645. https://doi.org/10.3390/app10196645
APA StyleKim, M. S., & Park, J. (2020). Immediate Effects of an Inverted Body Position on Energy Expenditure and Blood Lactate Removal after Intense Running. Applied Sciences, 10(19), 6645. https://doi.org/10.3390/app10196645