Fecal Indicator Bacteria Transport from Watersheds with Differing Wastewater Technologies and Septic System Densities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Site Selection
2.2. Sampling Protocol
2.3. Statistical Analysis
3. Results and Discussion
3.1. Septic System Density
3.2. Wastewater Treatment Approach and Broader Water Quality Implications
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- US EPA. National Summary of Impaired Waters and TMDL Information. 2016. Available online: https://iaspub.epa.gov/waters10/attains_nation_cy.control?p_report_type=T (accessed on 18 August 2020).
- US CDC. Recreational Water Illnesses. 2017. Available online: https://www.cdc.gov/healthywater/swimming/swimmers/rwi.html (accessed on 18 August 2020).
- Payment, P.; Locas, A. Pathogens in Water: Value and Limits of Correlation with Microbial Indicators. Groundwater 2011, 49, 4–11. [Google Scholar] [CrossRef] [PubMed]
- USGS. Bacteria and E. coli in Water. 2016. Available online: https://www.usgs.gov/special-topic/water-science-school/science/bacteria-and-e-coli-water?qt-science_center_objects=0#qt-science_center_objects (accessed on 18 August 2020).
- US EPA. Recreational Water Quality Criteria and Methods. 2012. Available online: https://www.epa.gov/wqc/recreational-water-quality-criteria-and-methods (accessed on 18 August 2020).
- de Brauwere, A.; Ouattara, N.K.; Servais, P. Modeling Fecal Indicator Bacteria Concentrations in Natural Surface Waters: A Review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2380–2453. [Google Scholar] [CrossRef] [Green Version]
- Wright, M.E.; Solo-Gabriele, H.M.; Elmir, S.; Fleming, L.E. Microbial load from animal feces at a recreational beach. Mar. Pollut. Bull. 2009, 58, 1649–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, E.E.; Leh, M.D.K.; Haggard, B.E. Spatiotemporal variation of bacterial water quality and the relationship with pasture land cover. J. Water Health 2017, 15, 839–848. [Google Scholar] [CrossRef] [PubMed]
- NC DEQ. Nutrient Sensitive Waters and Special Watersheds. 2019. Available online: https://deq.nc.gov/about/divisions/energy-mineral-land-resources/nsw-special-watersheds (accessed on 18 August 2020).
- Gelting, R. A public health perspective on onsite wastewater systems. J. Environ. Health 2007, 69, 62–63. [Google Scholar] [PubMed]
- Zarate-Bermudez, M.A. Contributions to enhancing the public health perspective on onsite wastewater management. J. Environ. Health 2014, 77, 32–33. [Google Scholar] [PubMed]
- Cahoon, L.B.; Hales, J.C.; Carey, E.S.; Loucaides, S.; Rowland, K.R.; Nearhoof, J.E. Shellfishing Closures in Southwest Brunswick County, North Carolina: Septic Tanks vs. Storm-Water Runoff as Fecal Coliform Sources. J. Coastal Res. 2006, 22, 319–327. [Google Scholar] [CrossRef]
- Meeroff, D.; Bloetscher, F.; Bocca, T.; Morin, F. Evaluation of Water Quality Impacts of On-site Treatment and Disposal Systems on Urban Coastal Waters. Water Air Soil Pollut. 2008, 192, 11–24. [Google Scholar] [CrossRef]
- Mallin, M.A.; McIver, M.R. Pollutant impacts to Cape Hatteras National Seashore from urban runoff and septic leachate. Mar. Pollut. Bull. 2012, 64, 1356–1366. [Google Scholar] [CrossRef]
- Iverson, G.; Humphrey, C., Jr.; Postma, M.; O’Driscoll, M.; Manda, A.; Finley, A. Influence of Sewered Versus Septic Systems on Watershed Exports of E. coli. Water Air Soil Pollut. 2017, 228, 1–12. [Google Scholar] [CrossRef]
- Humphrey, C.P.; Sanderford, C.; Iverson, G. Concentrations and Exports of Fecal Indicator Bacteria in Watersheds with Varying Densities of Onsite Wastewater Systems. Water Air Soil Pollut. 2018, 229, 1–16. [Google Scholar] [CrossRef]
- Ahmed, W.; Neller, R.; Katouli, M. Evidence of septic system failure determined by a bacterial biochemical fingerprinting method. J. Appl. Microbiol. 2005, 98, 910–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gold, A.J.; Lamb, B.E.; Loomis, G.W.; Boyd, J.R.; Cabelli, V.J.; McKiel, C.G. Wastewater Renovation in Buried and Recirculating Sand Filters. J. Environ. Qual. 1992, 21, 720–725. [Google Scholar] [CrossRef] [Green Version]
- Kauppinen, A.; Martikainen, K.; Matikka, V.; Veijalainen, A.; Pitkänen, T.; Heinonen-Tanski, H.; Miettinen, I.T. Sand filters for removal of microbes and nutrients from wastewater during a one-year pilot study in a cold temperate climate. J. Environ. Manag. 2014, 133, 206–213. [Google Scholar] [CrossRef]
- Gotkowska-Płachta, A.; Gołaś, I.; Korzeniewska, E.; Koc, J.; Rochwerger, A.; Solarski, K. Evaluation of the distribution of fecal indicator bacteria in a river system depending on different types of land use in the southern watershed of the Baltic Sea. Environ. Sci. Pollut. Res. 2015, 23, 4073–4085. [Google Scholar] [CrossRef]
- Cahoon, L.B.; Hales, J.C.; Carey, E.S.; Loucaides, S.; Rowland, K.R.; Toothman, B.R. Multiple modes of water quality impairment by fecal contamination in a rapidly developing coastal area: Southwest Brunswick County, North Carolina. Environ. Monit. Assess. 2016, 188, 89. [Google Scholar] [CrossRef] [Green Version]
- Jefferson, F.; Lawrence, B. Cahoon. Risks to Coastal Wastewater Collection Systems from Sea-Level Rise and Climate Change. J. Coastal Res. 2011, 27, 652–660. [Google Scholar]
- Mallin, M.A.; Cahoon, L.B.; Toothman, B.R.; Parsons, D.C.; McIver, M.R.; Ortwine, M.L.; Harrington, R.N. Impacts of a raw sewage spill on water and sediment quality in an urbanized estuary. Mar. Pollut. Bull. 2007, 54, 81–88. [Google Scholar] [CrossRef]
- Sowah, R.; Zhang, H.; Radcliffe, D.; Bauske, E.; Habteselassie, M.Y. Evaluating the influence of septic systems and watershed characteristics on stream faecal pollution in suburban watersheds in Georgia, USA. J. Appl. Microbiol. 2014, 117, 1500–1512. [Google Scholar] [CrossRef]
- US Census. Annual Estimates of the Resident Population for Counties in the United States: April 1, 2010 to July 1, 2019 (CO-EST2019-ANNRES). 2020. Available online: https://data.census.gov/cedsci (accessed on 18 August 2020).
- NC DEQ. 2018 North Carolina 303(d) List of Impaired Waters. 2019. Available online: https://files.nc.gov/ncdeq/Water%20Quality/Planning/TMDL/303d/2018/2018-NC-303-d--List-Final.pdf (accessed on 18 August 2020).
- UNRBA. Lick Creek Watershed Restoration Plan. 2009. Available online: https://files.nc.gov/ncdeq/Mitigation%20Services/Watershed_Planning/Neuse_River_Basin/Lick_Creek/UNRBA_Lick%20Creek_LWP.pdf (accessed on 18 August 2020).
- City of Durham. Little Lick Creek Watershed Plan. 2016. Available online: https://durhamnc.gov/960/Little-Lick-Creek-Watershed-Improvement- (accessed on 18 August 2020).
- USDA. Web Soil Survey. 2017. Available online: https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm (accessed on 18 August 2020).
- Rantz, S.E. Measurement and Computation of Streamflow: Volume 1. Measurement of Stage and Discharge; USGS Geological Survey Water-Supply Paper 2175: Washington, DC, USA, 1982. [Google Scholar]
- Young, K.D.; Thackston, E.L. Housing Density and Bacterial Loading in Urban Streams. J. Environ. Eng. 1999, 125, 1177–1180. [Google Scholar] [CrossRef]
- Frenzel, S.A.; Couvillion, C.S. Fecal-indicator bacteria in streams along a gradient of residential development. J. Amer. Water Res. Assoc. 2002, 38, 265–273. [Google Scholar] [CrossRef]
- Schilling, K.E.; Zhang, Y.; Hill, D.R.; Jones, C.S.; Wolter, C.F. Temporal variations of Escherichia coli concentrations in a large Midwestern river. J. Hydrol. 2009, 365, 79–85. [Google Scholar] [CrossRef]
- R Core Team. R: A language and environment for statistical computing. 2018. Available online: https://www.r-project.org/ (accessed on 17 September 2020).
- Hathaway, J.M.; Hunt, W.F.; Simmons, O.D. Statistical Evaluation of Factors Affecting Indicator Bacteria in Urban Storm-Water Runoff. J. Environ. Eng. 2010, 136, 1360–1368. [Google Scholar] [CrossRef]
- Crabill, C.; Donald, R.; Snelling, J.; Foust, R.; Southam, G. The impact of sediment fecal coliform reservoirs on seasonal water quality in Oak Creek, Arizona. Water Res. 1999, 33, 2163–2171. [Google Scholar] [CrossRef]
- St Laurent, J.; Mazumder, A. Influence of seasonal and inter-annual hydro-meteorological variability on surface water fecal coliform concentration under varying land-use composition. Water Res. 2014, 48, 170–178. [Google Scholar] [CrossRef]
- Anderson, C.W.S.A. Rounds. Phosphorus and E. coli and Their Relation to Selected Constituents During Storm Runoff Conditions in Fanno Creek, Oregon, 1998–99; USGS: Portland, OR, USA, 2003. [Google Scholar]
- Kubera, Ł.; Małecka-Adamowicz, M.; Jankowiak, E.; Dembowska, E.; Perliński, P.; Hejze, K. Influence of Environmental and Anthropogenic Factors on Microbial Ecology and Sanitary Threat in the Final Stretch of the Brda River. Water 2019, 11, 922. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Mao, G.; Liu, J.; Gao, G.; Zou, C.; Bartlam, M.G.; Wang, Y. Spatial-Temporal Changes of Bacterioplankton Community along an Exhorheic River. Front. Microbiol. 2016, 7, 250. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.M.; Le, Q.T.P.; Garnier, J.; Janeau, J.; Rochelle-Newall, E. Seasonal variability of faecal indicator bacteria numbers and die-off rates in the Red River basin, North Viet Nam. Sci. Rep. 2016, 6, 21644. [Google Scholar] [CrossRef]
- Gazzaz, N.M.; Yusoff, M.K.; Juahir, H.; Ramli, M.F.; Aris, A.Z. Water Quality Assessment and Analysis of Spatial Patterns and Temporal Trends. Water Environ. Res. 2013, 85, 751–766. [Google Scholar] [CrossRef]
- Tetzlaff, D.; Capell, R.; Soulsby, C. Land use and hydroclimatic influences on Faecal Indicator Organisms in two large Scottish catchments: Towards land use-based models as screening tools. Sci. Total Environ. 2012, 434, 110–122. [Google Scholar] [CrossRef]
- Plummer, J.D.; Long, S.C. Monitoring source water for microbial contamination: Evaluation of water quality measures. Water Res. 2007, 41, 3716–3728. [Google Scholar] [CrossRef] [PubMed]
- Katz, B.G.; Griffin, D.W.; Davis, J.H. Groundwater quality impacts from the land application of treated municipal wastewater in a large karstic spring basin: Chemical and microbiological indicators. Sci. Total Environ. 2009, 407, 2872–2886. [Google Scholar] [CrossRef] [PubMed]
- Birch, A.L.; Emanuel, R.E.; James, A.L.; Nichols, E.G. Hydrologic Impacts of Municipal Wastewater Irrigation to a Temperate Forest Watershed. J. Environ. Qual. 2016, 45, 1303–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatt, B.E.; Fletcher, T.D.; Walsh, C.J.; Taylor, S.L. The Influence of Urban Density and Drainage Infrastructure on the Concentrations and Loads of Pollutants in Small Streams. Environ. Manag. 2004, 34, 112–124. [Google Scholar] [CrossRef]
- Landers, M.N.; Paul, D. Ankcorn. Methods to Evaluate Influence of Onsite Septic Wastewater-Treatment Systems on Base Flow in Selected Watersheds in Gwinnett County, Georgia, October 2007; U.S. Geological Survey: Reston, VA, USA, 2008. [Google Scholar]
- Kelly, W.R.; Panno, S.V.; Hackley, K.C.; Hwang, H.; Martinsek, A.T.; Markus, M. Using chloride and other ions to trace sewage and road salt in the Illinois Waterway. Appl. Geochem. 2010, 25, 661–673. [Google Scholar] [CrossRef]
Watershed | Stream Gradient | Imperviousness 1 | Area | Septic Systems | Septic System Density | Septic System Distance to Outlet (Number of Systems) | Land Cover Data 1 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
(%) | (ha) | (#) | (# ha−1) | <0.2 km | <1 km | >1 km | Forest | Agriculture | Developed | ||
CS1 | 0.002 | 4 | 2283 | 280 | 0.12 | 1 | 2 | 278 | 60.3% | 7.5% | 16.3% |
CS2 | 0.005 | 1 | 184 | 48 | 0.26 | 0 | 3 | 45 | 74.6% | 7.7% | 7.7% |
CS3 | 0.008 | 13 | 19 | 7 | 0.37 | 5 | 2 | 0 | 25.7% | 4.5% | 63.3% |
SF1 | 0.003 | 9 | 335 | 75 | 0.22 | 0 | 20 | 55 | 45.2% | 0.5% | 48.9% |
SF2 | 0.007 | 6 | 40 | 15 | 0.37 | 7 | 8 | 0 | 31.2% | 0.0% | 53.7% |
SF3 | 0.005 | 7 | 83 | 35 | 0.42 | 14 | 21 | 0 | 44.7% | 0.0% | 52.5% |
SEW | 0.002 | 7 | 1128 | NA | NA | NA | NA | NA | 53.0% | 8.0% | 26.5% |
Watershed | Median | Geometric Mean | ||||||
---|---|---|---|---|---|---|---|---|
E. coli | Enterococci | E. coli | Enterococci | |||||
Conc | Export | Conc | Export | Conc | Export | Conc | Export | |
CS1 | 160 (105–725) | 85 (5–486) | 105 (26–1088) | 23 (5–479) | 195 (207) | 60 (149) | 107 (330) | 33 (133) |
CS2 | 71 (34–7068) | 35 (1–1744) | 80 (3–3434) | 18 (1–847) | 168 (1992) | 35 (492) | 92 (963) | 19 (238) |
CS3 | 526 (16–12100) | 47 (<1–1672) | 101 (19–6017) | 20 (<1–855) | 410 (3367) | 5 (723) | 125 (1702) | 2 (267) |
SF1 | 67 (26–1628) | 18 (1–730) | 55 (5–968) | 11 (1–434) | 89 (449) | 15 (210) | 64 (283) | 11 (122) |
SF2 | 232 (21–5600) | 26 (<1–2023) | 48 (5–2176) | 19 (<1–156) | 229 (1743) | 12 (597) | 75 (652) | 3 (64) |
SF3 | 1203 (22–12098) | 151 (<1–2086) | 253 (133–12100) | 66 (<1–3634) | 792 (3416) | 81 (602) | 603 (3530) | 49 (1089) |
CS | 160 (16–12100) | 48 (<1–1744) | 96 (3–6017) | 22 (<1–855) | 238 (2276) | 21 (524) | 107 (1126) | 11 (217) |
SF | 223 (21–12098) | 41 (<1–2086) | 126 (5–12100) | 22 (<1–3634) | 245 (2256) | 24 (497) | 139 (2134) | 12 (641) |
SEW | 170 (86–1153) | 94 (7–1117) | 121 (10–657) | 39 (4–879) | 233 (370) | 89 (319) | 115 (219) | 44 (252) |
Watershed | SC | Cl− | DO | pH | Temperature | ORP | Turbidity | Discharge |
---|---|---|---|---|---|---|---|---|
μS cm−1 | mg L−1 | mg L−1 | °C | mV | NTU | L min−1 ha−1 | ||
CS1 | 152 (119–298) | 15.7 (12.1–39.9) | 8.5 (3.7–15.7) | 7.3 (6.4–8.8) | 13.3 (1.6–25.1) | −22.0 (−136.8–163.9) | 39 (9–120) | 3.6 (0.1–10.2) |
CS2 | 103 (77–1069) | 6.8 (5.0–305.7) | 7.8 (3.7–14.3) | 7.3 (6.6–8.4) | 12.8 (3.2–23.1) | −24.5 (−118.6–193.5) | 13 (5–66) | 1.4 (0.1–4.4) |
CS3 | 418 (105–598) | 50.9 (10.2–109.0) | 6.3 (1.3–15.1) | 7.3 (6.3–8.5) | 12.4 (1.9–23.6) | −31.7 (−143.2–141.3) | 12 (4–58) | 2.4 (<0.1–22.1) |
SF1 | 189 (75–818) | 19.0 (4.5–209.7) | 5.9 (2.9–14.5) | 7.1 (6.6–8.2) | 13.8 (2.7–23.9) | −19.4 (−128.8–187.8) | 20 (5–132) | 1.2 (<0.1–4.0) |
SF2 | 174 (89–585) | 17.7 (13.1–67.2) | 6.0 (1.6–14.3) | 7.2 (6.3–8.5) | 13.7 (3.0–22.6) | −18.4 (−137.0–163.0) | 24 (5–72) | 0.9 (<0.1–13.2) |
SF3 | 346 (166–774) | 48.1 (10.3–186.5) | 5.9 (1.4–15.8) | 7.3 (6.5–9.3) | 13.0 (2.0–23.5) | −27.0 (−154.5–164.3) | 25 (6–122) | 0.7 (<0.1–6.3) |
CS | 152 (77–1069) | 15.7 (5.0–305.7) | 7.5 (1.3–15.7) | 7.3 (6.3–8.8) | 12.9 (1.6–25.1) | −31.6 (−143.2–193.5) | 14 (4–120) | 2.2 (<0.1–22.1) |
SF | 203 (75–818) | 21.5 (4.5–209.7) | 5.9 (1.4–15.8) | 7.2 (6.3–9.3) | 13.8 (2.0–23.9) | −21.3 (−154.5–187.8) | 24 (5–132) | 0.7 (<0.1–13.2) |
SEW | 204 (146–461) | 18.7 (13.9–79.7) | 8.7 (3.5–20.2) | 7.4 (6.4–8.0) | 12.5 (1.1–26.5) | −14.7 (−120.4–132.0) | 27 (12–88) | 3.5 (0.2–10.3) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iverson, G.; Sanderford, C.; Humphrey, C.P., Jr.; Etheridge, J.R.; Kelley, T. Fecal Indicator Bacteria Transport from Watersheds with Differing Wastewater Technologies and Septic System Densities. Appl. Sci. 2020, 10, 6525. https://doi.org/10.3390/app10186525
Iverson G, Sanderford C, Humphrey CP Jr., Etheridge JR, Kelley T. Fecal Indicator Bacteria Transport from Watersheds with Differing Wastewater Technologies and Septic System Densities. Applied Sciences. 2020; 10(18):6525. https://doi.org/10.3390/app10186525
Chicago/Turabian StyleIverson, Guy, Christa Sanderford, Charles P. Humphrey, Jr., J. Randall Etheridge, and Timothy Kelley. 2020. "Fecal Indicator Bacteria Transport from Watersheds with Differing Wastewater Technologies and Septic System Densities" Applied Sciences 10, no. 18: 6525. https://doi.org/10.3390/app10186525
APA StyleIverson, G., Sanderford, C., Humphrey, C. P., Jr., Etheridge, J. R., & Kelley, T. (2020). Fecal Indicator Bacteria Transport from Watersheds with Differing Wastewater Technologies and Septic System Densities. Applied Sciences, 10(18), 6525. https://doi.org/10.3390/app10186525