Image-Based Scratch Detection by Fuzzy Clustering and Morphological Features
Abstract
:1. Introduction
2. The FCM Algorithm and Scratch Detection by Growth Area
2.1. The FCM Algorithm
2.2. Scratch Region Segmentation
3. Scratch Area Growth Based on Multiple Features
4. Experiments
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Puntous, T.; Pavan, S.; Delafosse, D.; Jourlin, M.; Rech, J. Ability of quality controllersto detect standard scratches on polished surfaces. Precis. Eng. 2013, 37, 924–928. [Google Scholar] [CrossRef]
- Tang, B.; Jianyi, K.; Shiqian, W. Review of surface defect detection based on machine vision. J. Image Graph. 2017, 22, 1640–1663. [Google Scholar]
- Gross, K.A.; Lungevics, J.; Zavickis, J.; Plūduma, L. A comparison of quality control methods for scratch detection on polished metal surfaces. Measurement 2018, 117, 397–402. [Google Scholar] [CrossRef]
- Xie, X. A Review of Recent Advances in Surface Defect Detection using Texture analysis Techniques. ELCVIA Electron. Lett. Comput. Vis. Image Anal. 2008, 7, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Yun, J.P.; Choi, S.; Seo, B.; Kim, S.W. Real-time vision-based defect inspection for high-speed steel products. Opt. Eng. 2008, 47, 077204. [Google Scholar] [CrossRef] [Green Version]
- Pitard, G. Surface Appearance Metrology and Modeling for Industrial Quality Inspection. Ph.D. Thesis, Université Grenoble Alpes, Saint-Martin-d’Hères, France, 2016. [Google Scholar]
- Rangarajan, P.; Sinha, M.; Watkins, V.; Harding, K.; Sparks, J. Scratch visibility of polymers measured using optical imaging. Polym. Eng. Sci. 2003, 43, 749–758. [Google Scholar] [CrossRef]
- Kopparapu, S.K. Lighting design for machine vision application. Image Vis. Comput. 2006, 24, 720–726. [Google Scholar] [CrossRef]
- Li, J.; Rao, X.; Wang, F.; Wu, W.; Ying, Y. Automatic detection of common surface defects on oranges using combined lighting transform and image ratio methods. Postharvest Biol. Technol. 2013, 82, 59–69. [Google Scholar] [CrossRef]
- Khonina, S.N.; Karpeev, S.V.; Morozov, A.A.; Paranin, V.D. Implementation of ordinary and extraordinary beams interference by application of diffractive optical elements. J. Mod. Opt. 2016, 63, 1239–1247. [Google Scholar] [CrossRef]
- Pitard, G.; Le Goïc, G.; Mansouri, A.; Favrelière, H.; Pillet, M.; George, S.; Hardeberg, J.Y.; Sharma, P.; Bianchi, F.M. Robust Anomaly Detection Using Reflectance Transformation Imaging for Surface Quality Inspection. In Proceedings of the Scandinavian Conference on Image Analysis, Tromsø, Norway, 12–14 June 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 550–561. [Google Scholar]
- Jung, S.Y.; Tsai, Y.; Chiu, W.; Hu, J.; Sun, C. Defect Detection on Randomly Textured Surfaces by Convolutional Neural Networks. In Proceedings of the 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Auckland, New Zealand, 9–12 July 2018; pp. 1456–1461. [Google Scholar]
- Kobayashi, T. Spiral-Net with F1-Based Optimization for Image-Based Crack Detection. In Proceedings of the 14th Asian Conference on Computer Vision, Perth, Australia, 2–6 December 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 88–104. [Google Scholar]
- Yous, H.; Serir, A.; Yous, S. CNN-based method for blotches and scratches detection in archived videos. J. Vis. Commun. Image Represent. 2019, 59, 486–500. [Google Scholar] [CrossRef]
- De Natale, F.G.B.; Boato, G. Detecting Morphological Filtering of Binary Images. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1207–1217. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, J.; Zhang, H.; He, J.; Guo, Y. Tiny Surface Defects on Small Ring Parts Using Normal Maps. In Proceedings of the Pacific Rim Conference on Multimedia, Hefei, China, 21–22 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 403–413. [Google Scholar]
- Huang, D.; Liao, S.; Sunny, A.I.; Yu, S. A novel automatic surface scratch defect detection for fluid-conveying tube of Coriolis mass flow-meter based on 2D-direction filter. Measurement 2018, 126, 332–341. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, X.; Ying, Z.; Zhang, L.; Pan, J.; Chen, S. Segmentation of shallow scratches image using an improved multi-scale line detection approach. Multimed. Tools Appl. 2019, 78, 1053–1066. [Google Scholar] [CrossRef]
- Tsai, D.-M.; Molina, D.E.R. Morphology-based defect detection in machined surfaces with circular tool-mark patterns. Measurement 2019, 134, 209–217. [Google Scholar] [CrossRef]
- Wang, F.; Cao, P.; Yang, Y.; Liu, R.; Wu, F.; Zhang, P.; Jiang, J.; Chai, H.; Zhang, Y.; Du, Y.; et al. Complicated intermittent scratches detection research on surface of optical components based on adaptive sector scanning algorithm cascading mean variance threshold algorithm. Tenth Int. Symp. Precis. Eng. Meas. Instrum. 2019, 11053, 110531L. [Google Scholar] [CrossRef]
- Dunn, J.C. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. J. Cybern. 1973, 3, 32–57. [Google Scholar] [CrossRef]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Springer Science and Business Media LLC.: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Yang, M.-S.; Nataliani, Y. A Feature-Reduction Fuzzy Clustering Algorithm Based on Feature-Weighted Entropy. IEEE Trans. Fuzzy Syst. 2017, 26, 817–835. [Google Scholar] [CrossRef]
- Hadizadeh, H.; Shokouhi, S.B. Random Texture Defect Detection Using 1-D Hidden Markov Models Based on Local Binary Patterns. IEICE Trans. Inf. Syst. 2008, 1937–1945. [Google Scholar] [CrossRef]
- Kobayashi, H.H.; Hara, Y.; Doi, H.; Takai, K.; Sumiya, A. Hybrid Defect Detection Method Based on the Shape Measurement and Feature Extraction for Complex Patterns. IEICE Trans. Inf. Syst. 2000, 83, 1338–1345. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Z.; Ji, Y.; Fei, Z.; Xu, X.; Zhao, B. Image-Based Scratch Detection by Fuzzy Clustering and Morphological Features. Appl. Sci. 2020, 10, 6490. https://doi.org/10.3390/app10186490
Tan Z, Ji Y, Fei Z, Xu X, Zhao B. Image-Based Scratch Detection by Fuzzy Clustering and Morphological Features. Applied Sciences. 2020; 10(18):6490. https://doi.org/10.3390/app10186490
Chicago/Turabian StyleTan, Zhiying, Yan Ji, Zhongwen Fei, Xiaobin Xu, and Baolai Zhao. 2020. "Image-Based Scratch Detection by Fuzzy Clustering and Morphological Features" Applied Sciences 10, no. 18: 6490. https://doi.org/10.3390/app10186490
APA StyleTan, Z., Ji, Y., Fei, Z., Xu, X., & Zhao, B. (2020). Image-Based Scratch Detection by Fuzzy Clustering and Morphological Features. Applied Sciences, 10(18), 6490. https://doi.org/10.3390/app10186490